首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use low-energy electron microscopy to image the reversible transformation of the TiO2(1 1 0) surface between a high-temperature 1 × 1 structure and a low-temperature 1 × 2 structure. The reconstruction dynamics are novel: 1 × 2 bands nucleated during cooling at the steps of the starting 1 × 1 surface and then grew laterally from the steps. The transformation kinetics are dominated by mass flow from the surface to the bulk, a process that facilitates converting the high-density 1 × 1 phase to the lower-density 1 × 2 phase. We have also imaged how the 1 × 1 surface reconstructs to 1 × 2 phase after sufficient oxygen is removed from the crystal’s bulk during vacuum annealing. 1 × 2 bands also nucleated and grew laterally from the initial 1 × 1-surface’s steps. However, because this isothermal 1 × 1-to-1 × 2 transition occurs largely by mass redistribution on the surface, the steps of the initial 1 × 1 surface and final 1 × 2 surface are offset. We propose models of mass redistribution during the 1 × 1/1 × 2 phase transition to explain this effect. We conclude that the phase transition is first-order because it always occurred by the nucleation and growth of discrete phases. Finally, we show that quenching can roughen TiO2’s surface by forming pits and that changing temperature causes step motion on 1 × 2 surfaces.  相似文献   

2.
Atomic ordering of HCl-isopropanol (HCl-iPA) treated and vacuum annealed (1 0 0) InAs surfaces was studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and reflectance anisotropy spectroscopy (RAS). On the as-treated surface, a diffused (1 × 1) pattern is observed, which successively evolves to the β2(2 × 4)/c(2 × 8) and (4 × 2)/c(8 × 2) ones after annealing to 330 °C and 410 °C, respectively. At the intermediate temperature of 370 °C, an 2(2 × 4)/(4 × 2) mixed reconstruction is observed. Reflectance anisotropy spectra are compared with those of the corresponding reconstructions observed after As-decapping and found to be quite similar. Therefore we conclude that high-quality (1 0 0) InAs surfaces can be obtained by wet chemical treatment in an easy, inexpensive and practical way.  相似文献   

3.
Atomically resolved non-contact fm mode atomic force microscopy images have been obtained from TiO2(100) surfaces. The 1×1 surface is observed, as well as the 1×3 phase previously imaged with STM. The morphology of the latter reconstruction consists of (110) microfacets. An additional reconstruction with 1×3 symmetry is observed, which is assigned to a phase intermediate between the 1×1 and 1×3-microfacet terminations.  相似文献   

4.
李宗宝  王霞  樊帅伟 《物理学报》2014,63(15):157102-157102
本文采用基于周期性密度泛函理论研究了Cu/N表面沉积共掺杂对锐钛矿相TiO2(001)面的修饰作用.计算了Cu在不同位置掺杂TiO2(101)面和(001)面的形成能,并在此基础上计算N不同位置掺杂TiO2(001)面及Cu/TiO2(001)面的形成能,通过形成能的比较获得了表面共掺杂的最优化结构.在此基础上计算了最稳定结构的能带结构及态密度,并与S单掺杂TiO2(001)面最稳定结构进行了对比.通过对结果的分析发现:Cu/N在(001)表面的沉积共掺杂有效降低了TiO2的禁带宽度,并在表面形成CuO2相,更利于提高其光催化活性.  相似文献   

5.
The surface structure and properties of the HfB2(0 0 0 1) (Hafnium diboride, HfB2) surface have been investigated with X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Annealing temperatures above 1900°C produce a sharp (1×1) LEED pattern, which corresponds to STM images showing flat (0 0 0 1) terraces with a very low contamination level separated by steps 3.4 Å in height, corresponding to the separation of adjacent Hf planes in the HfB2 bulk structure. For lower annealing temperatures, extra p(2×2) spots were observed with LEED, which correspond to intermediate terraces of a p(2×1) missing row structure as observed with STM.  相似文献   

6.
Oxide catalysts are frequently used to convert toxic species to environmentally benign molecules, and to prevent the formation of toxic species in the first place. In this paper, growth and characterization of model oxide systems employed in both approaches is discussed. An example of the former approach is the selective catalytic reduction (SCR) of NO emitted from power plants by NH3, which employs tungsten and vanadium oxides supported on the anatase polymorph of TiO2. To model SCR catalysts, epitaxial titanium, vanadium and tungsten oxide films were grown using molecular beam epitaxy and magnetron sputtering. Two different anatase orientations were grown on LaAlO3 substrates and their interactions with vanadia were characterized. On LaAlO3 (0 0 1), anatase exposed a (4 × 1) reconstructed (0 0 1) surface. Vanadia lifted the reconstruction and at 1 ML a (1 × 1) surface with mostly V5+ was observed. Continued V2O5 growth led to loss of order, but at high temperatures epitaxial VO2 could be grown; vanadia behaved similarly on anatase films on LaAlO3 (1 1 0). Results suggested that the monolayer is pseudomorphic with O adsorption oxidizing the surface V to 5+, since the anatase structure cannot accommodate more bulk oxygen, only a monolayer can be pseudomorphic and have only V5+. Thus the vanadia monolayer has unique structural and chemical properties that can help explain why vanadia monolayers on TiO2 are much more active than bulk V2O5. For WO3, a series of added row reconstructions were observed as the epitaxial films were reduced. The effect of these structures on surface chemistry was characterized by studying 1-propanol adsorption. The results indicated that the structure of the WO3 surface did not alter its catalytic function but had a strong effect on reaction kinetics. As an example of a system where catalysts prevent the formation of toxic species, the reactivity of oxidized Pd surfaces used in CH4 catalytic combustion were studied. An ordered PdO-like monolayer was found to be less reactive towards CO than adsorbed O on Pd. On the other hand, the PdO layer favored a lower activation energy C3H6 oxidation pathway. The results indicated that Pd oxidation reduces the sticking coefficient of reactive species but once molecules adsorb, the oxide surface can reduce the activation energy for subsequent reaction.  相似文献   

7.
We address a current controversy concerning the nature of the surfaces of Fe3O4(001) and γ-Fe2O3(001) grown on MgO(001) by molecular beam epitaxy. Despite recent claims to the contrary, we show that γ-Fe2O3(001) unambiguously exhibits a (1×1) surface net, in contrast to Fe3O4(001), which assumes a R45 reconstruction. In addition, we present high-energy-resolution Fe 2p and O 1s core-level photoelectron spectra obtained at both normal and grazing emission for γ-Fe2O3(001) and Fe3O4(001). These spectra show that the Fe3O4(001) surface has a higher Fe(III)/Fe(II) ratio than the bulk, and that the asymmetry in the O 1s line shape for Fe3O4(001) is due to final state effects rather than the presence of a surface oxygen or hydroxyl species.  相似文献   

8.
The mechanism and energetics are presented of the dimerization of two adsorbed surface SiH2 groups on the H-terminated Si(0 0 1)-(2 × 1) surface to form Si2H4 species during the initial stages of growth in plasma deposition of hydrogenated amorphous silicon (a-Si:H) films. The reactions are observed during classical molecular-dynamics (MD) simulations of a-Si:H film deposition from SiH2 radical precursors impinging on an initially H-terminated Si(0 0 1)-(2 × 1) surface and substrate temperature, T, over the range 500T700 K. The Si2H4 species resulting from the surface SiH2 dimerization reactions undergo surface conformational changes resulting in either a non-rotated (NRD) or a rotated dimer (RD) configuration. The RD configuration is found to be the energetically favorable one. The MD simulation results for the structure of the NRD and RD surface Si2H4 configurations corroborate with ab initio calculations of optimized adsorption configurations of SiH2 radicals on crystalline Si surfaces, as well as results of STM imaging of the thermal decomposition of disilane on Si(0 0 1).  相似文献   

9.
Scanning tunneling microscopy experiments on a clean, reduced SnO2(1 0 0)-(1 × 1) surface reveal surface defects with zero-, one-, and two-dimensions. Point defects consist of missing SnO/SnO2 units. Line defects are probably crystallographic shear planes that extend to the surface and manifest themselves as rows of atoms, shifted half a unit cell along the [0 1 0] direction. Their ends act as preferential nucleation sites for the formation of Pd clusters upon vapor deposition. Areas of a more reduced surface phase, still with a (1 × 1) structure and a half-unit cell deep, form at [0 0 1]-oriented step edges.  相似文献   

10.
周康  冯庆  田芸  李科  周清斌 《计算物理》2018,35(6):702-710
采用密度泛函理论(DFT)体系广义梯度近似(GGA)第一性原理平面波超软赝势方法,分析锐钛矿型TiO2(101)表面吸附NO2分子光学气敏传感的微观机理.结果表明:Cu和Cr原子易于掺入TiO2(101)表面,掺杂表面能稳定地吸附NO2分子且吸附后光学性质发生显著变化.表面吸附NO2分子后,Cu掺杂TiO2(101)表面对分子的吸附能最大,吸附后结构更稳定,分子与表面的距离最短.通过分析差分电荷密度和电荷布居数发现,NO2分子与基底表面间发生电荷转移,转移电子数目:Cu掺杂表面 > Cr掺杂表面 > 无掺杂表面.对比吸收光谱和反射光谱发现,在Cu掺杂表面吸附分子后,光学性质变化最明显,说明表面与吸附分子间氧化还原能力是决定光学气敏传感性能的核心因素.在过渡金属中,Cu与Cr都有4s价电子结构,其4s电子降低了材料表面氧空位的氧化性,增加了其还原性.对于氧化性气体,可以提升表面与分子的氧化还原作用,而Cu的4s电子更加活泼,从而光学气敏传感特性更加明显.因此,Cu掺杂的TiO2对氧化性气体是一种较好的光学气敏传感材料.  相似文献   

11.
王冠仕  林彦明  赵亚丽  姜振益  张晓东 《物理学报》2018,67(23):233101-233101
在密度泛函理论的基础上,系统地研究了Cu/N(共)掺杂的TiO2/MoS2异质结体系的几何结构、电子结构和光学性质.计算发现,TiO2/MoS2异质结的带隙相比于纯的TiO2(101)表面明显变小,Cu/N(共)掺杂TiO2/MoS2异质结体系的禁带宽度也明显地减小,这导致光子激发能量的降低和光吸收能力的提高.通过计算Cu/N(共)掺杂TiO2/MoS2的差分电荷密度,发现光生电子与空穴积累在掺杂后的TiO2(101)表面和单层MoS2之间,这表明掺杂杂质体系可以有效地抑制光生电子-空穴对的复合.此外,我们计算了在不同压力下TiO2/MoS2异质结的几何、电子和光学性质,发现适当增加压力可以有效提高异质结的光吸收性能.本文结果表明,Cu/N(共)掺杂TiO2/MoS2异质结和对TiO2/MoS2异质结加压都能有效地提高材料的光学性能.  相似文献   

12.
The effect of hydrogen adsorption on the Pd(110) surface structure at room temperature has been studied by scanning tunneling microscopy. Depending on the partial pressure of hydrogen two different reconstructions of Pd(110) have been observed: a (1 × 3) phase at hydrogen pressures in the 10−9 mbar range and an additional (1 × 2) phase at pH2 ≥ 5 × 10−8 mbar. Both reconstructions are found to be of the missing-row type. The evolution of the surface reconstructions has been followed in situ.  相似文献   

13.
Interactions of HCOOH with stoichiometric (nearly defect-free) and defective TiO2(110) surfaces have been studied experimentally using X-ray photoelectron spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), and theoretically using electronic structure calculations. The HCOOH saturation coverages were 0.58 ML, 0.77 ML, and 0.92 ML (1 ML ≈ 5.2 × 1014 cm−2) for nearly defect-free surfaces, for electron-beam exposed surfaces, and for Ar+ ion bombarded surfaces, respectively. The excess formic acid adsorption quantitatively corresponds to the number of newly exposed sites created by electron-beam exposure. Electronic structure calculations show a strong adsorptive interaction for formate on cation sites on both stoichiometric and defective TiO2 surfaces, consistent with the experimental observations. In spite of adsorption at defect sites, little or no defect healing (defect healing means a reduction in defect signal observed by the photoemission measurements) was observed for either electron-beam exposed or Ar+ bombarded surfaces by HCOOH exposure up to 104L at room temperature. However, some healing will occur if extra energy provided by electrons is introduced to breakdown formate species. In contrast to water adsorption, electronic structure calculations on defective TiO2 have found that formate is located in an asymmetric position with respect to the Ti3+ sites with a potential additional interaction with the Ti4+ site.  相似文献   

14.
J. Oviedo  M. J. Gillan   《Surface science》2001,490(3):221-236
First-principles calculations based on density functional theory in the generalised gradient approximation, together with pseudopotentials and plane-wave basis sets, have been used to investigate the energetics of oxygen adsorption on stoichiometric and weakly and strongly reduced SnO2(1 1 0) surfaces. It is shown that, if the surface species formed by oxygen adsorption are restricted to be charge neutral, then oxygen cannot be exothermically adsorbed from the gas phase on the stoichiometric surface. A variety of molecular and dissociative modes of adsorption are examined on the reduced surface produced by removing all bridging oxygens and on the weakly reduced surface that results from removal of only a fraction of these oxygens, with the adsorbed species being in both the singlet and the triplet states, and we identify a number of modes not discussed before in the literature. We use the calculated adsorption energies to propose a tentative assignment of these adsorption modes to the peaks observed in temperature programmed desorption experiments on the SnO2 and TiO2(1 1 0) surfaces.  相似文献   

15.
The water adsorption on the bare and H-terminated Si(1 0 0) surfaces has been studied by the BML-IRRAS technique. It is found that H-terminated surfaces are much less reactive compared to the bare silicon surfaces. The (1 × 1)-H and (3 × 1)-H surfaces show similar and less reactivity pattern compared to the (2 × 1)-H surface. At higher exposures, the water reaction with coupled monohydride species provides an effective channel for oxygen insertion into the back bonds of dihydride species. It is not attributed to the H–Si–Si–H + H2O → H–S–Si–OH + H2, which could give rise to the characteristic Si–H and Si–OH modes, respectively at 2081 and 921 cm−1. A more suitable reaction mechanism involving a metastable species, H–Si–Si–H + H2O → H2Si  HO–Si–H (metastable) explains well the bending modes of oxygen inserted silicon dihydride species which are observed relatively strongly in the reaction of water with H-terminated Si(1 0 0) surfaces.  相似文献   

16.
I. D. Cocks  Q. Guo  E. M. Williams   《Surface science》1997,390(1-3):119-125
The TiO2(110)-(1 × 1) surface and its reconstruction as a (1 × 2) form have been studied with low energy electron diffraction (LEED), electron stimulated desorption ion angular distribution (ESDIAD) and scanning tunnelling microscopy (STM). Oxygen ion desorption occurs within a lobe perpendicular to the (1 × 1) surface, changing to two off-normal lobes for the (1 × 2) reconstruction. This transformation in the ESDIAD pattern is consistent with the added Ti2O3 row model of the (1 × 2) reconstruction proposed by Onishi and Iwasawa. STM studies of the stoichiometric and electron irradiated surfaces reinforce the association of the O+ ESD contribution with majority sites at the surface. Adsorption of acetic acid on the (1 × 1) surface produces a (2 × 1) overlayed and induces a reconstruction of the underlying substrate. ESDIAD reveals H+ ions emitted off-normally from dissociatively adsorbed acetate, and along the surface normal from surface hydroxyls. Adsorption of acetic acid on the (1 × 2) surface does not modify the LEED pattern, but ESDIAD reveals H+ desorption with a weaker off-normal contribution consistent with the Ti2O3 model of the reconstruction.  相似文献   

17.
The effects of electron and X-ray beams on thiophene overlayers on TiO2(100) 1 × 1 and 1 × 3 surfaces have been investigated using AES, UPS and XPS. Mg K X-rays were found to polymerise a thiophene multilayer condensed at 120 K. The evidence points to a substrate-secondary-electron mediated process. A 3 keV electron beam also modifies a condensed thiophene overlayer, probably by polymerisation.  相似文献   

18.
X. -C. Guo  R. J. Madix   《Surface science》2004,550(1-3):81-92
The adsorption of oxygen and carbon dioxide on cesium-reconstructed Ag(1 1 0) surface has been studied with scanning tunneling microscopy (STM) and temperature programmed desorption (TPD). At 0.1 ML Cs coverage the whole surface exhibits a mixture of (1 × 2) and (1 × 3) reconstructed structures, indicating that Cs atoms exert a cooperative effect on the surface structures. Real-time STM observation shows that silver atoms on the Cs-covered surface are highly mobile on the nanometer scale at 300 K. The Cs-reconstructed Ag(1 1 0) surface alters the structure formed by dissociative adsorption of oxygen from p(2 × 1) or c(6 × 2) to a p(3 × 5) structure which incorporates 1/3 ML Ag atoms, resulting in the formation of nanometer-sized (10–20 nm) islands. The Cs-induced reconstruction facilitates the adsorption of CO2, which does not adsorb on unreconstructed, clean Ag(1 1 0). CO2 adsorption leads to the formation of locally ordered (2 × 1) structures and linear (2 × 2) structures distributed inhomogeneously on the surface. Adsorbed CO2 desorbs from the Cs-covered surface without accompanied O2 desorption, ruling out carbonate as an intermediate. As a possible alternative, an oxalate-type surface complex [OOC–COO] is suggested, supported by the occurrence of extensive isotope exchange between oxygen atoms among CO2(a). Direct interaction between CO2 and Cs may become significant at higher Cs coverage (>0.3 ML).  相似文献   

19.
PbI2 has been adsorbed on the clean InSb(001)-(4 × 1) reconstructed surface and on the InSb(001)-(1 × 3)-Pb lead covered reconstructed surface. On the clean surface epitaxial growth occurred with the unit mesh of the layered PbI2 aligning exactly with both the substrate [110] and [1 0] directions. On desorption a reaction occurred between the last layer of PbI2, and the substrate, forming a series of structures which finished with a well-formed (1 × 3)-Pb structure in which the surface is depleted/enriched in In/Sb compared to the clean (4 × 1). The Pb in this structure is thought to partially replace surface In. Epitaxial adsorption also occurred on the (1 × 3)-Pb surface generating a single, well-formed structure with the hexagonal net of the PbI2 aligned with just the [1 0] substrate direction. The structures and reactions are discussed and a row matching model is proposed to explain the single epitaxial orientation of PbI2 on the (1 × 3)-Pb surface.  相似文献   

20.
Quantitative low energy electron diffraction has been used to determine the structure of the Ni(1 1 1)(√3×√3)R30°-Sn surface phase. The results confirm that the surface layer comprises a substitutional alloy of composition Ni2Sn as previously found by low energy ion scattering (LEIS), and also shows that there is no stacking fault at the substrate/alloy interface as has been found in (√3×√3)R30°-Sb surface alloys on Ag and Cu(1 1 1). The surface alloy layer is rumpled with the Sn atoms 0.45 ± 0.03 Å higher above the substrate than the surrounding Ni atoms. This rumpling amplitude is almost identical to that previously reported on the basis of the LEIS study. Comparison with similar results for Sn-induced surface alloy phases on Ni(1 0 0) and Ni(1 1 0) shows a clear trend to reduced rumpling with reduced surface atomic layer density, an effect which can be rationalised in terms of the different effects of valence electron charge smoothing at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号