首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
Elucidation of the hydrodesulfurization (HDS) mechanism on molybdenum‐based catalysts using radioisotope tracer methods and reaction kinetics is reviewed. Firstly, to investigate the sulfidation state in Mo/Al2O3 and Co–Mo/Al2O3 catalysts, presulfiding of these catalysts has been performed using a 35S pulse tracer method. Secondly, HDS of radioactive 35S‐labeled dibenzothiophene was carried out over a series of sulfided molybdena–alumina catalysts and cobalt‐promoted molybdena–alumina catalysts in a pressurized flow reactor to estimate the behavior of sulfur on the working catalysts. Finally, sulfur exchange of a 35S‐labeled catalyst with hydrogen sulfide was performed to estimate the relationship between the amount of labile sulfur and catalytically active sites.  相似文献   

2.
《Comptes Rendus Chimie》2016,19(10):1286-1302
The performance, in thiophene HDS, of a CoMo/Al2O3 catalyst was successfully improved through chemical modification of its oxidic precursor by impregnation with 1,5-pentanediol solution. The gas phase activation with a H2/H2S mixture was followed by thermogravimetric analysis coupled with a rapid chromatograph; the catalysts were characterized at different steps of the activation using X-ray photoelectron spectroscopy (XPS). It appeared that the addition of the organic agent retards the sulfidation of the supported metals, leading to a simultaneous sulfidation of Co and Mo atoms. This induces the formation of smaller MoS2 slabs and thus an increase in the number of active CoMoS sites, directly correlated with the better HDS performance of the modified solid. The role of 1,5-pentanediol is likely to inhibit, at low temperature, the adsorption of H2S on the solid and thus the sulfidation of the supported metals.  相似文献   

3.
In this paper, the conversion of methane to methanol on CuO/Al2O3 and Mo–CuO/Al2O3 catalysts in a plasma reactor was tested. A comparison between catalytic and plasma-catalytic systems had been made in tested temperature range of 50–300°C. Experimental results showed that plasma-catalytic system demonstrated a much better methane conversion than catalytic system in tested temperature range and Mo–CuO/Al2O3 revealed a higher catalytic activity than CuO/Al2O3 for methanol synthesis. Furthermore, an Arrhenius plot was made in order to deduce the mechanism of plasma activation, which revealed that the presence of plasma decreased the activation energy for both catalysts. In the case of Mo-CuO/Al2O3 catalyst, the enhanced activity for methanol synthesis was assumed due to the oxygen vacancies on Mo–CuO/Al2O3 catalyst, which can utilize plasma-induced species to improve the catalytic efficiency.  相似文献   

4.
CoMo/Al2O3 sulfide catalysts varying in preparation method and Co/Mo ratio have been tested in the hydrorefining of a mixture of straight-run diesel fraction and rapeseed oil in a flow reactor at a temperature of 340–360°C, a hydrogen pressure of 4.0–7.0 MPa, and a liquid hourly space velocity of 1–2 h?1. A comparison between catalysts prepared using citric acid (CoMo/Al2O3-1.5) and both citric and orthophosphoric acids (CoMoP/Al2O3-1.5) as promoters, with Co/Mo = 0.3 and 0.5, has demonstrated that the most active catalyst in hydrodesulfurization and hydrodenitrogenation is the phosphorus-containing Co/Mo ≈ 0.5 sample. The addition of rapeseed oil to straight-run diesel fraction lowers the hydrodesulfurization and hydrodenitrogenation activities of the CoMo sulfide catalysts, irrespective of the method by which they were prepared. The fatty acid triglyceride conversion selectivity of these catalysts depends on the Co/Mo ratio and on reaction conditions: decreasing the Co/Mo ratio from 0.46 to 0.26, lowering the reaction temperature, and raising the hydrogen pressure and hydrogen-to-feedstock ratio increase the C18/C17 hydrocarbon ratio in the hydrogenated product. The addition of rapeseed oil improves the quality of the product; however, for attaining the preset residual sulfur level in this case, the process needs to be conducted at a higher temperature than the hydrorefining of straight-run diesel fraction containing no admixture.  相似文献   

5.
Elucidation of the hydrodesulfurization (HDS) mechanism on molybdenumbased catalysts using radioisotope tracer methods and reaction kinetics is reviewed. Firstly, to investigate the sulfidation state in Mo/Al2O3 and Co–Mo/Al2O3 catalysts, presulfiding of these catalysts has been performed using a 35S pulse tracer method. Secondly, HDS of radioactive 35Slabeled dibenzothiophene was carried out over a series of sulfided molybdena–alumina catalysts and cobaltpromoted molybdena–alumina catalysts in a pressurized flow reactor to estimate the behavior of sulfur on the working catalysts. Finally, sulfur exchange of a 35Slabeled catalyst with hydrogen sulfide was performed to estimate the relationship between the amount of labile sulfur and catalytically active sites.  相似文献   

6.
石冈  韩伟  袁珮  范煜  鲍晓军 《催化学报》2013,34(4):659-666
以硫代乙酰胺为硫源,钼酸钠为钼源,乙醇为分散剂,采用化学沉积法制备了MoS3/Al2O3催化剂前驱体,再用H2高温处理得到高分散硫化型MoS2/γ-Al2O3催化剂,运用N2吸附-脱附、X射线光电子能谱以及高分辨透射电子显微镜等技术对MoS2/γ-Al2O3催化剂进行了表征,并以二苯并噻吩作为模型化合物评价了催化剂的加氢脱硫(HDS)活性.结果表明,与浸渍法相比,所制催化剂具有更大的比表面积和孔体积、更高的活性金属分散度、更佳的Mo物种硫化度以及更短的MoS2片层长度和更高的堆积度,因而在二苯并噻吩HDS反应中表现出远优于浸渍法所制催化剂的活性.乙醇可通过S?H-O氢键吸附至MoS3纳米粒子表面,可有效防止其生长和团聚,起到分散剂的作用.  相似文献   

7.
Impregnated and co-precipitated, promoted and unpromoted, bulk and supported iron catalysts were prepared, characterized, and subjected to hydrogenation of CO2 at various pressures (1–2 MPa) and temperatures (573–673 K). Potassium, as an important promoter, enhanced the CO2 uptake and selectivity towards olefins and long-chain hydrocarbons. Al2O3, when added as a structural promoter during co-precipitation, increased CO2 conversion as well as selectivity to C2+ hydrocarbons. Among V, Cr, Mn and Zn promoters, Zn offered the highest selectivity to C2–C4 alkenes. The different episodes involved in the transformation of the catalyst before it reached steady-state were identified, on the co-precipitated catalyst. Using a biomass derived syngas (CO/CO2/H2), CO alone took part in hydrogenation. When enriched with H2, CO2 was also converted to hydrocarbons. The deactivation of impregnated Fe–K/Al2O3 catalyst was found to be due to carbon deposition, whereas that for the precipitated catalyst was due to increase in crystallinity of iron species. The suitability of SiO2, TiO2, Al2O3, HY and ion exchanged NaY as supports was examined for obtaining high activity and selectivity towards light olefins and C2+ hydrocarbons and found Al2O3 to be the best support. A comparative study with Co catalysts revealed the advantages of Fe catalysts for hydrocarbon production by F–T synthesis.  相似文献   

8.
CeO2 promoted palladium catalysts supported on Al2O3 were prepared using the impregnation (IM) and the deposition-precipitation (DP) methods. The activities and sulfur tolerance of the catalysts for hydrodesulfurization (HDS) were detected with thiophene HDS as probe reaction. H2 adsorption, XRD, FTIR, NH3-TPD, XPS were used to characterize the catalysts. The Pd-CeO2/Al2O3 (IM) catalyst was highly active for the HDS reaction, and it had much stronger sulfur tolerance than the Pd/Al2O3 catalyst. Pd-CeO2/Al2O3 (DP) showed excellent sulfur tolerance while its initial activity decreased. It was observed that with the chlorine bridge, the interfacial structure of Pd-Cl−1-Ce3+ was responsible for the high activity of the Pd-CeO2/Al2O3 (IM) catalyst, at the same time the interaction of Pd with Ce was weakened by Cl−1 ions. The enhanced sulfur tolerance over the Pd-CeO2/Al2O3 (IM) catalyst was attributed to the weakened Pd-S bond caused by the competitive adsorption of H2S on Ce3+ ions. As to the Pd-CeO2/Al2O3 (DP) catalyst, a strong interaction of Pd with Ce put Pd at an electron-deficient state, the creation of sulfided palladium was therefore inhibited.  相似文献   

9.
Platinum catalysts supported on indium-doped alumina were prepared by the sol–gel method. The method allows the incorporation of In3+ in the alumina network. The indium-doped alumina supports showed narrow pore size distribution (5.4–4.0 nm) and high specific surface areas (258–280 m2/g). The 27Al NMR-MAS spectroscopy identified aluminum in tetrahedral, pentahedral, and octahedral coordination; however, the intensity of the signal assigned to aluminum in pentahedral coordination diminishes with the increase of the content of indium. Total acidity determined by ammonia thermodesorption diminishes strongly in Pt/In–Al2O3 catalysts, suggesting a selective deposit of platinum over the acid sites of the support. The effect of the support in the platinum catalytic activity was evaluated in the n-heptane dehydrocyclization reaction. The selectivity patterns for such reaction were modified substantially in the doped Pt/In–Al2O3 catalysts, in comparison with the Pt-In/Al2O3–I coimpregnated reference catalyst. As an important result, the formation of benzene was suppressed totally over the indium-doped alumina sol–gel supports with a high content (3 wt%) of indium.  相似文献   

10.
A series of Cr/Al2O3 and Co/Al2O3 catalysts were tested in the selective ammoxidation of ethylene to acetonitrile. Catalysts were prepared either by sol–gel method or by impregnation with chromium or cobalt acetylacetonate salts. Physicochemical properties of catalysts were accomplished by several techniques such as chemical analysis, physisorption of N2, X-ray diffraction (XRD), 27Al MAS NMR, UV–Visible diffuse reflectance (DRS) and Raman spectroscopy and temperature programmed reduction of H2 (H2–TPR). Textural analysis reveals that mesoporous materials with pronounced surface areas were obtained using sol–gel procedure while impregnation of the support produces a moderate decrease of its surface area and pore volume. XRD analysis confirms the presence of highly dispersed metal species which reside essentially on the surface and measure less than 4 nm. Furthermore, 27Al MAS NMR shows that for xerogels, part of metal species occupies sites on/in A12O3 in close vicinity of octahedral 27Al. This, apparently, is not the case for aerogels. For Cr/Al2O3 catalysts, isolated Cr6+, mono and polychromate species were identified using DRS, Raman Spectroscopy and H2–TPR which seem to play a key role in the ammoxidation of ethylene. Furthermore, for cobalt doped catalysts, CoAl2O4 was identified as active phase on the basis of DRS and H2–TPR results. From the supercritical drying, it results generally better catalysts than catalysts calcined by ordinary procedure which leads to inactive agglomerated Co3O4 and CoO–Al2O3 phase.  相似文献   

11.
薛冬  吕振辉 《分子催化》2017,31(4):382-389
以Mo、Ni为活性组分,Al_2O_3为载体,采用不同柠檬酸添加方法制备了Mo-Ni-P/Al_2O_3催化剂.通过氢气程序升温还原(H2-TPR)、X射线衍射(XRD),透射扫描电镜(TEM)、XPS等表征方法研究催化剂的物化性质.结果表明:催化剂经柠檬酸的后处理,改善了载体氧化铝表面羟基基团的分布,促使Mo物种以八面体配位多核聚钼酸的形态存在,有效地减弱了载体与活性金属之间的强相互作用,提高了Mo物种的分散度与硫化度,使得催化剂形成更多"Mo-Ni-S"加氢活性相,提高了催化剂的加氢活性.与其他处理方法相比,柠檬酸后处理的催化剂对VGO具有更高的加氢脱硫、脱氮与芳烃饱和性能.  相似文献   

12.
A γ-alumina-supported bimetallic Ru-Mo sulfide catalyst preparedvia precipitation from homogeneous solution (PFHS) has been used to effect the abstraction of H2 from H2S. The decomposition reaction was also carried out over Al2O3-supported RuS2 and MoS2 catalysts synthesizedvia PFHS. The performance of bimetallic system exceeded (ca. 40%) the simple additive activities of the constituent monometallic sulfide catalysts and about 2–3 times the individual activities of the monometallic sulfide samples, suggesting chemical synergism between Ru and Mo in the Ru-Mo catalyst. In particular, comparison with other catalysts in the literature showed that specimens preparedvia PFHS exhibited better activities than those from direct sulfidation of the metal oxide. Kinetic study over the Ru-Mo bimetallic sulfide catalyst in a quartz micro-reactor at 110 kPa and between 783–973 K revealed a 1st order dependency on H2S partial pressure and an activation energy of about 92 kJ mol−1. The irreversible adsorption of H2S on a coordinatively unsaturated site is thought to be the rate-limiting step.  相似文献   

13.
Hydrodesulfurization (HDS) activity and activation energy (ε′TH) values were determined and compared with irreversible sulfur uptake (Sirr) by 5 Al2O3-supported (MoOx, Ni and three NiMoOx) catalysts and, in unsulfided form with the cyclohexane conversion activity. Synergy between Ni and Mo in catalytic activity and a correlation between HDS activity and the amounts of Sirr was found. Some explanations for the differences in catalytic behavior of the different samples are presented.  相似文献   

14.
A new Ni?CMo/Al2O3-based nano catalyst composition was developed and manufactured by a proprietary catalyst preparation technology for diesel hydrotreatment. The nanocatalyst has been performing commercially since September 2011, consistently producing ultra low-sulfur diesel of Euro-IV/V standards from a feedstock containing 1.75?wt% sulfur. In addition to lowering sulfur content, the catalyst also enhances cetane number and reduces boiling end-point to obtain diesel with better quality. The nanocatalyst was characterized by X-ray photoelectron spectroscopy to ascertain the electronic state of metal species. The morphological characterization of the nanocatalyst carried out by TEM revealed the presence of nano-sized MoS2 slab structures. The performance of the nanocatalyst is mainly attributed to MoS2 slabs with increased stacking which in turn are generated from the customized metal-sulfide precursors.  相似文献   

15.
Using the Anderson-type heteropoly compounds (HPCs) [X(OH)6Mo6O18] n− (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6− and cobalt (or nickel) nitrate, XMo/Al2O3 and Co(Ni)-XMo/Al2O3 catalysts were prepared. The catalysts were studied by low-temperature nitrogen adsorption, X-ray diffraction, and high-resolution transmission electron microscopy. The average length of the active-phase particles of the catalysts was 3.5 to 3.9 nm, and the average number of MoS2 layers in a packet was 1.4 to 2.1. The catalytic properties of the samples, which were estimated in dibenzothiophene (DBT) hydrodesulfurization and in the hydrotreating of the diesel fraction, are considerably dependent upon both the type and composition of the HPC, and the nature of the applied promoter (Ni or Co). As compared to the Ni-promoted catalysts, the Co-promoted samples exhibit a higher desulfurization activity, whereas the hydrogenation ability of the Ni-XMo/Al2O3 catalysts surpasses that of the Co-XMo/Al2O3 ones. The catalytic properties depend on the morphology of the nanostructured active phase. With a growing number of MoS2 layers in the packet of the catalysts’ active phase, the DBT hydrodesulfurization rate constants for both the direct desulfurization route and the preliminary hydrogenation rote rise linearly and the selectivity falls linearly for the hydrogenation route. The selectivity of Ni-XMo/Al2O3 decreases to a greater extent than that of Co-XMo/Al2O3. The dependences of the catalytic properties on the morphology of the catalysts’ active phase are consistent with the “dynamic” model of the functioning of the active sites of transition metal sulfides.  相似文献   

16.
Supported nickel–molybdenum and nickel–tungsten hydrocracking catalysts prepared using a support that consists of 70% Al2O3 and 30% amorphous aluminosilicate were characterized by nitrogen and mercury porosimetry, IR spectroscopy of adsorbed CO, and high-resolution electron microscopy. The catalytic tests in hydrocracking of vacuum gas oil containing 3.39% sulfur showed that the nature of the hydrogenating component (NiMo or NiW) only slightly influences the vacuum gas oil conversion and the diesel fraction yield, but noticeable influences the properties of the diesel fraction obtained. The catalyst NiMo/Al2O3–amorphous aluminosilicates, compared to NiW/Al2O3–amorphous aluminosilicates, ensures lower sulfur content in the diesel fraction obtained, whereas the catalyst NiW/Al2O3–amorphous aluminosilicates allows obtaining a diesel fraction with lower content of polyaromatic compounds.  相似文献   

17.
A series of CoMo/Al2O3 catalysts for selective hydrodesulfurization (HDS) of gasoline were studied with Raman spectroscopy, a powerful method that creates specific signals for the states and the distributions of oxidic precursors and sulfided active phases. The higher the Mo and Co, the lower the tetrahedrally coordinated molybdate, and the higher the polymolybdate. But the amount of polymolybdate decreased when CoMoO4 appeared. Cobalt-promoted polymolybdate was the precursor, and its relative content correlated well with the HDS selectivity. For sulfided catalysts, adding the cobalt-promoter led to local distortion-disorder of the MoS2 structure and the formation of a CoMoS phase. This method can provide important information for designing new industrial selective-HDS catalvsts.  相似文献   

18.
Decomposition of ammonium heptamolybdate–hexamethylentetramine (HMTA) complex (HMTA)2(NH4)4Mo7O24·2H2O was studied as a function of treatment conditions in the range 300–1173 K. The evolution of solid products during decomposition was studied by thermal analysis and in situ EXAFS. Depending on the nature of the gas used for treatment, single phases of highly dispersed nitrides Mo2N, carbide Mo2C, or oxide MoO2 can be obtained. The nature of the products obtained was explained by qualitative thermodynamical considerations. Morphology of the solids considerably depends on such preparation parameters as temperature and mass velocity of the gas flow. For the nitride-based materials, catalytic activity was evaluated in the model thiophene HDS reaction. It was demonstrated that NH3-treated samples showed better catalytic activity than N2-treated ones due to cleaner surface and better morphology. Transmission microscopy, XRD and XPS studies showed that MoS2 is formed on the surface during HDS reaction or sulfidation with H2S. Optimized nitride-derived catalysts showed mass activity several times higher than unsupported MoS2 or MoS2/Al2O3 reference catalyst.  相似文献   

19.
The effect of the heat treatment temperature on the sulfidation and activity of CoMo/Al2O3 catalysts designed for deep hydrodesulfurization of diesel fuel was studied. The catalysts were prepared using citric acid as a chelating ligand. The organic ligands present in the samples heat-treated at 110 and 220°C retard the decomposition of dimethyl disulfide and the formation of the sulfide phase but make the catalyst more active than the samples calcined at higher temperatures.  相似文献   

20.
Deep hydrodesulfurization (HDS) of sterically hindered sulfur compounds in gas oils will require enhanced hydrogenation activity to hydrogenate the aromatic rings of the sulfur compounds. Although H2S is known to inhibit the direct HDS route for most of the sulfided catalysts, its promotion to the hydrogenation and subsequent HDS was newly observed for unsupported MoS2. This promotion suggests that ultra deep HDS over sulfide catalysts can be achieved along with high metal loading, minimal support-metal interactions and optimal dependence on the Ni species. On the other hand, the strong hydrogenation activity of sulfur-tolerant noble metal catalysts suggests that ultra deep HDS as well as deep aromatics saturation can be achieved. This paper discusses recent catalytic approaches for ultra deep HDS using conventional sulfide catalysts and/or noble metal catalysts, such as the newly developed Pd-Pt/Yb-USY zeolite catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号