首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Two‐dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light‐emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self‐doping directed synthesis of ultrathin 2D homologous (BA)2(MA)n −1Pbn Br3n +1 (1<n <∞) perovskites uses 2D (BA)2PbBr4 perovskites as the template with MA+ dopant. Ultrathin (BA)2(MA)n −1Pbn Br3n +1 perovskites are formed via an intercalation–merging mechanism, with thickness shrinking down to 4.2 nm and the lateral dimension to 57 μm. The ultrathin 2D homologous (BA)2(MA)n −1Pbn Br3n +1 perovskites are potential materials for photodetectors with promising photoresponse and stability.  相似文献   

2.
Herein, the photophysical, morphological, optical gain characteristics of a set of trigonal monodisperse starburst conjugated macromolecules ( Tr1‐Tr4 ) have been systematically investigated in order to elucidate the influence of the molecular structures on their optoelectronic performance. With increasing the oligofluorene arm length, absorption spectra were red‐shifted progressively, whereas an increase in photoluminescence quantum yields (PLQYs) and optical gain coefficients, and a corresponding reduction in amplified spontaneous emission (ASE) thresholds and loss coefficients were observed for Tr1‐Tr3 except for Tr4 . The results indicate that the effective conjugation length become saturated for Tr3 in this system. Impressively, the resulting molecules manifested very low ASE thresholds (4.4–11.6 μJ cm?2) with high photostability, as well as high thermal stability. One dimensional distributed feedback (DFB) lasers exhibited a minimum lasing threshold of 10.38 nJ pulse?1 (0.86 kW cm?2, 4.325 μJ cm?2) for Tr3 . It should be emphasized that the ASE threshold of Tr1‐Tr4 was nearly unchanged from room temperature to 200 °C. The results suggest that this kind of truxene‐cored conjugated starbursts with high photostability and low lasing thresholds are rather promising gain media for organic semiconductor lasers.  相似文献   

3.
Halide double perovskites have recently bloomed as the green candidates for optoelectronic applications, such as X‐ray detection. Despite great efforts, the exploration of promising organic–inorganic hybrid double perovskites toward X‐ray detection remains unsuccessful. Now, single crystals of the lead‐free hybrid double perovskite, (BA)2CsAgBiBr7 (BA+ is n‐butylammonium), featuring the unique 2D multilayered quantum‐confined motif, enable quite large μτ (mobility‐lifetime) product up to 1.21×10?3 cm2 V?1. This figure‐of‐merit realized in 2D hybrid double perovskites is unprecedented and comparable with that of CH3NH3PbI3 wafers. (BA)2CsAgBiBr7 crystals also exhibit other intriguing attributes for X‐ray detection, including high bulk resistivity, low density of defects and traps, and large X‐ray attenuation coefficient. Consequently, a vertical‐structure crystal device under X‐ray source yields a superior sensitivity of 4.2 μC Gyair?1 cm?2.  相似文献   

4.
Organic–inorganic hybrid perovskites have attracted significant attention owing to their extraordinary optoelectronic properties with applications in the fields of solar energy, lighting, photodetectors, and lasers. The rational design of these hybrid materials is a key factor in the optimization of their performance in perovskite‐based devices. Herein, a mechanochemical approach is proposed as a highly efficient, simple, and reproducible method for the preparation of four types of hybrid perovskites, which were obtained in large amounts as polycrystalline powders with high purity and excellent optoelectronics properties. Two archetypal three‐dimensional (3D) perovskites (MAPbI3 and FAPbI3) were synthesized, together with a bidimensional (2D) perovskite (Gua2PbI4) and a “double‐chain” one‐dimensional (1D) perovskite (GuaPbI3), whose structure was elucidated by X‐ray diffraction.  相似文献   

5.
Recent reports demonstrate that a two‐dimensional (2D) structural characteristic can endow perovskites with both remarkable photoelectric conversion efficiency and high stability, but the synthesis of ultrathin 2D perovskites with large sizes by facile solution methods is still a challenge. Reported herein is the controlled growth of 2D (C4H9NH3)2PbBr4 perovskites by a chlorobenzene‐dimethylformide‐acetonitrile ternary solvent method. The critical factors, including solvent volume ratio, crystallization temperature, and solvent polarity on the growth dynamics were systematically studied. Under optimum reaction condition, 2D (C4H9NH3)2PbBr4 perovskites, with the largest lateral dimension of up to 40 μm and smallest thickness down to a few nanometers, were fabricated. Furthermore, various iodine doped 2D (C4H9NH3)2PbBrx I4−x perovskites were accessed to tune the optical properties rationally.  相似文献   

6.
Two‐dimensional (2D) halide perovskites have attracted significant attention due to their compositional flexibility and electronic diversity. Understanding the structure–property relationships in 2D double perovskites is essential for their development for optoelectronic applications. In this work, we observed the emergence of pressure‐induced emission (PIE) at 2.5 GPa with a broad emission band and large Stokes shift from initially nonfluorescent (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). The emission intensity increased significantly upon further compression up to 8.2 GPa. Moreover, the band gap narrowed from the starting 2.61 eV to 2.19 eV at 25.0 GPa accompanied by a color change from light yellow to dark yellow. Analysis of combined in situ high‐pressure photoluminescence, absorption, and angle‐dispersive X‐ray diffraction data indicates that the observed PIE can be attributed to the emission from self‐trapped excitons. This coincides with [AgBr6]5? and [BiBr6]3? inter‐octahedral tilting which cause a structural phase transition. High‐pressure study on (BA)4AgBiBr8 sheds light on the relationship between the structure and optical properties that may improve the material's potential applications in the fields of pressure sensing, information storage and trademark security.  相似文献   

7.
Searching for inexpensive hydrogen evolution reaction (HER) electrocatalysts with high activity has attracted considerable research interest in the past years. Reported herein is the topotactic fabrication of self‐supported Cu3P nanowire arrays on commercial porous copper foam (Cu3P NW/CF) from its Cu(OH)2 NW/CF precursor by a low‐temperature phosphidation reaction. Remarkably, as an integrated three‐dimensional hydrogen‐evolving cathode operating in acidic electrolytes, Cu3P NW/CF maintains its activity for at least 25 hours and exhibits an onset overpotential of 62 mV, a Tafel slope of 67 mV dec?1, and a Faradaic efficiency close to 100 %. Catalytic current density can approach 10 mA cm?2 at an overpotential of 143 mV.  相似文献   

8.
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three‐dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2‐azaniumylethyl)trimethylphosphanium [tetra‐μ‐bromido‐plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two‐dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ~2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.  相似文献   

9.
Rubidium lead halides (RbPbX3), an important class of all‐inorganic metal halide perovskites, are attracting increasing attention for photovoltaic applications. However, limited by its lower Goldschmidt tolerance factor t≈0.78, all‐inorganic RbPbBr3 has not been reported. Now, the crystal structure, X‐ray diffraction (XRD) pattern, and band structure of perovskite‐phase RbPbBr3 has now been investigated. Perovskite‐phase RbPbBr3 is unstable at room temperature and transforms to photoluminescence (PL)‐inactive non‐perovskite. The structural evolution and mechanism of the perovskite–non‐perovskite phase transition were clarified in RbPbBr3. Experimentally, perovskite‐phase RbPbBr3 was realized through a dual‐source chemical vapor deposition and annealing process. These perovskite‐phase microspheres showed strong PL emission at about 464 nm. This new perovskite can serve as a gain medium and microcavity to achieve broadband (475–540 nm) single‐mode lasing with a high Q of about 2100.  相似文献   

10.
The synthesis of previously unknown perovskite (CH3NH3)2PdCl4 is reported. Despite using an organic cation with the smallest possible alkyl group, a 2D organic–inorganic layered Pd‐based perovskites was still formed. This demonstrates that Pd‐based 2D perovskites can be obtained even if the size of the organic cation is below the size limit predicted by the Goldschmidt tolerance‐factor formula. The (CH3NH3)2PdCl4 phase has a bulk resistivity of 1.4 Ω cm, a direct optical gap of 2.22 eV, and an absorption coefficient on the order of 104 cm?1. XRD measurements suggest that the compound is moderately stable in air, an important advantage over several existing organic–inorganic perovskites that are prone to phase degradation problems when exposed to the atmosphere. Given the recent interest in organic–inorganic perovskites, the synthesis of this new Pd‐based organic–inorganic perovskite may be helpful in the preparation and understanding of other organic–inorganic perovskites.  相似文献   

11.
In layered hybrid perovskites, such as (BA)2PbI4 (BA=C4H9NH3), electrons and holes are considered to be confined in atomically thin two dimensional (2D) Pb–I inorganic layers. These inorganic layers are electronically isolated from each other in the third dimension by the insulating organic layers. Herein we report our experimental findings that suggest the presence of electronic interaction between the inorganic layers in some parts of the single crystals. The extent of this interaction is reversibly tuned by intercalation of organic and inorganic molecules in the layered perovskite single crystals. Consequently, optical absorption and emission properties switch reversibly with intercalation. Furthermore, increasing the distance between inorganic layers by increasing the length of the organic spacer cations systematically decreases these electronic interactions. This finding that the parts of the layered hybrid perovskites are not strictly electronically 2D is critical for understanding the electronic, optical, and optoelectronic properties of these technologically important materials.  相似文献   

12.
Two-dimensional (2D) organic–inorganic hybrid perovskites, benefiting from their natural anisotropy of quantum-well motifs and optical properties, have shown remarkable polarization-dependent responses superior to the 3D counterparts. Here, for the first time, multiwavelength polarization-sensitive detectors were fabricated by using single crystals of a guanidine-based 2D hybrid perovskite, (BA)2(GA)Pb2I7 (where BA+ is n-butylammonium and GA+ is guanidium). Its unique 2D quantum-well structure results in strong crystallographic-dependence of optical absorption. Strikingly, our crystal-based photodetector exhibits a prominent photocurrent dichroic ratio (Imax/Imin) of ∼2.2 at 520 nm, higher than the typical 2D inorganic materials (GeSe, ∼1.09, PdSe2, ∼1.8). In addition, notable dichroic ratios of 1.29 and 1.23 at 405 nm and 637 nm are also created for the multiwavelength polarized-light detection. The prominent detecting performances, including low dark current (1.6×10−11 A), considerable on/off ratio (∼2×103), high photodetectivity (∼3.3×1011 Jones) and responsivity (∼12.01 mA W−1), make (BA)2(GA)Pb2I7 a promising candidate for polarized-light detection. This work sheds light on the rational engineering of new 2D hybrid perovskites for the high-performance optoelectronic device applications.  相似文献   

13.
Hybrid organic–inorganic metal halide perovskites possess exceptional structural tunability, with three‐ (3D), two‐ (2D), one‐ (1D), and zero‐dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low‐dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C4N2H14)SnBr4 and 0D (C4N2H14Br)4SnBr6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure.  相似文献   

14.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

15.
Zero‐dimensional (0D) lead‐free perovskites have unique structures and optoelectronic properties. Undoped and Sb‐doped all inorganic, lead‐free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb‐doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb‐doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high‐performance 0D lead‐free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

16.
Although two-dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room-temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room-temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm−2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility-lifetime product (μτ=1.0×10−3 cm2 V−1) for detecting X-ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X-ray-sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

17.
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3.  相似文献   

18.
3D and 2D hybrid perovskites, which have been known for more than 20 years, have emerged recently as promising materials for optoelectronic applications, particularly the 3D compound (CH3NH3)PbI3 (MAPI). The discovery of a new family of hybrid perovskites called d ‐MAPI is reported: the association of PbI2 with both methyl ammonium (MA+) and hydroxyethyl ammonium (HEA+) cations leads to a series of five compounds with general formulation (MA)1−2.48x(HEA)3.48x[Pb1−xI3−x]. These materials, which are lead‐ and iodide‐deficient compared to MAPI while retaining 3D architecture, can be considered as a bridge between the 2D and 3D materials. Moreover, they can be prepared as crystallized thin films by spin‐coating. These new 3D materials appear very promising for optoelectronic applications, not only because of their reduced lead content, but also in account of the large flexibility of their chemical composition through potential substitutions of MA+, HEA+, Pb2+ and I ions.  相似文献   

19.
The perovskite (BA)4[CuII(CuIInIII)0.5]Cl8 ( 1BA ; BA+=butylammonium) allows us to study the high-pressure structural, optical, and transport properties of a mixed-valence 2D perovskite. Compressing 1BA reduces the onset energy of CuI/II intervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of 1BA increases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuII perovskites achieve similar conductivity at ≈50 GPa. The solution-state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuII single perovskites and CuIInIII double perovskites.  相似文献   

20.
Recently, low‐dimensional organic‐inorganic hybrid metal halide perovskites acting as single‐component white‐light emitting materials have attracted extensive attention, but most studies concentrate on hybrid lead perovskites. Herein, we present two isomorphic zero‐dimensional (0D) hybrid cadmium perovskites, (HMEDA)CdX4 (HMEDA=hexamethylenediamine, X=Cl ( 1 ), Br ( 2 )), which contain isolated [CdX4]2? anions separated by [HMEDA]2+ cations. Under UV light excitation, both compounds display broadband bluish white‐light emission (515 nm for 1 and 445 nm for 2 ) covering the entire visible light spectrum with sufficient photophysical stabilities. Remarkably, compound 2 shows a high color rendering index (CRI) of 83 enabling it as a promising candidate for single‐component WLED applications. Based on the temperature‐dependent, powder‐dependent and time‐resolved PL measurements as well as other detailed studies, the broadband light emissions are attributed to self‐trapped excitons stemming from the strong electron‐phonon coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号