首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Copper(II) and cadmium(II) complexes of 5-(4'-derivatives phenyldiazo)-3-phenyl-2-thioxo-4-thiazolidinone (HLn) were prepared, their compositions and physicochemical properties were characterized by elemental analysis, magnetic suseptibility measurements, and infrared, electronic spectra. The novel complexes have the stoichiometric formulae [Cu(HLn)(OAc)n(H2O)(X)] (OAc = acetate, X = H2O or acetate) and [Cd(L)(OAc)(H2O)], respectively. Elemental analysis and IR spectra denote, that two types of complexes with different octahedral and tetrahedral structure for Cu(II) and Cd(II) ions. I.R. spectra show that the ligand is monobasic/neutral bidentate forming thereby a six-membered chelating ring and concomitant formation of an intramolecular hydrogen bond. The stoichiometeries of these complexes were determined conductometrically and indicated the formation of 1:1 and 1:2 (metal:ligand) complexes.  相似文献   

2.
Schiff base complexes of Cu(II), Ni(II) and Zn(II) with the o-hydroxyacetophenone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H(2)o-HAHNH) containing N and O donor sites have been synthesized. Both ligand and its metal complexes were characterized by different physicochemical methods, elemental analysis, molar conductivity ((1)H NMR, (13)C NMR, IR, UV-visible, ESR, MS spectra) and also thermal analysis (TG and DTG) techniques. The discussion of the outcome data of the prepared complexes indicates that the ligand behave as a bidentate and/or tridentate ligand. The electronic spectra of the complexes as well as their magnetic moments suggest octahedral geometries for all isolated complexes. The room temperature solid state ESR spectrum of the Cu(II) complex shows d(x2-y2) as a ground state, suggesting tetragonally distorted octahedral geometry around Cu(II) centre. The molar conductance measurements proved that the complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E(#), ΔH(#), ΔG(#), ΔS(#) are calculated from the DTG curves, for the [Ni(H(O)-HAHNH)(2)] and [Zn(H(2O)-HAHNH)(OAc)(2)]·H(2)O complexes using the Coats-Redfern equation. Also, the antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The [Cu(Ho-HAHNH)(OAc)(H(2)O)(2)] complex was the most active against all strains, including Aspergillus sp., Stemphylium sp. and Trichoderma sp. Fungi; E. coli and Clostridium sp. Bacteria.  相似文献   

3.
The synthesis of the novel tripodal ligand [N(CH2CH2CH2OH)(CH2CH2SH)2] H3-4 is reported. The aliphatic tetradentate ligand is equipped with an unsymmetrical NOS2 donor set. It reacts with Ni(OAc)2 x 4H2O or Zn(BF4)2 x xH2O to give the complexes [Ni(H-4)]2 5 and [Zn(H-4)]4 6, respectively. The molecular structures of 5 and 6 have been determined by X-ray diffraction. In both cases multinuclear, mu-thiolato-bridged complexes, wherein the ligand coordinates with only three (NS2) of the four donor groups, had formed. The dinuclear complex 5 adopts a butterfly geometry and contains nickel(II) ions in a square-planar NS3 coordination environment. Cyclic voltammetry experiments indicate that the nickel centers in 5 are electron-rich but not overly sensitive toward oxidation. Complex 6 is tetranuclear and the four thiolato-bridged metal centers form a ring. It shows a distorted tetrahedral coordination geometry for the zinc(II) ions in an NS3 coordination sphere. In both complexes the hydroxyl functionalized ligand arm of the tripodal ligand remains uncoordinated.  相似文献   

4.
Complexes of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and U(IV)O2 with (Z)-2-oxo-2-(2-(2-oxoindolin-3-ylidene)hydrazinyl)-N-phenylacetamide (H2OI) are reported and have been characterized by various spectroscopic techniques like (IR, UV–Vis, ESR 1H and 13C NMR) as well as magnetic and thermal (TG and DTA) measurements. It is found that the ligand behaves as a neutral tridentate, neutral tetradentate, monoanionic tridentate, monoanionic tridentate and dianionic tridentate. An octahedral geometry for all complexes except [Cu2(H2OI)(OAc)4](H2O)2 and [Cu(HOI)Cl](H2O)2 which have a square planar geometry. Furthermore, kinetic parameters were determined for each thermal degradation stage of some studied complexes using Coats–Redfern and Horowitz–Metzger methods. The bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated to confirm the geometry of the ligand and the investigated complexes.  相似文献   

5.
The synthesis of novel bimetallic Cu(II) complexes with general stoichiometry [Cu(2)(H(2)L)X(2)(H(2)O)(2)], [Cu(2)(H(2)L)(CH(3)COO)(2)] and [Cu(2)(H(2)L)SO(4)(H(2)O)(2)] (where H(2)L=dideprotonated ligand and X=NO(3)(-) and Cl(-)) derived from tetradentate ligand obtained by the condensation of 1,4-diformyl piperazine with carbohydrazide has been discussed. The complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, mass, UV, EPR spectral studies and thermogravimetric analyses. The value of magnetic moments indicates that the complexes are paramagnetic and show the antiferromagnetic interaction between the two metal centres. The complexes possess the square planar coordination environment. The values of covalency measurements, i.e., in-plane sigma-bonding alpha(2), in-plane pi-bonding beta(2) and orbital reduction factor k indicate the covalent nature of complexes.  相似文献   

6.
The reaction of 2,9-di(pyrid-2'-yl)-1,10-phenanthroline (dpp) with [RuCl(3)·3H(2)O] or [Ru(DMSO)(4)Cl(2)] provides the reagent trans-[Ru(II)(dpp)Cl(2)] in yields of 98 and 89%, respectively. This reagent reacts with monodentate ligands L to replace the two axial chlorides, affording reasonable yields of a ruthenium(II) complex with dpp bound tetradentate in the equatorial plane. The photophysical and electrochemical properties of the tetradentate complexes are strongly influenced by the axial ligands with electron-donating character to stabilize the ruthenium(III) state, shifting the metal-to-ligand charge-transfer absorption to lower energy and decreasing the oxidation potential. When the precursor trans-[Ru(II)(dpp)Cl(2)] reacts with a bidentate (2,2'-bipyridine), tridentate (2,2';6,2'-terpyridine), or tetradentate (itself) ligand, a peripheral pyridine on dpp is displaced such that dpp binds as a tridentate. This situation is illustrated by an X-ray analysis of [Ru(dpp)(bpy)Cl](PF(6)).  相似文献   

7.
The synthesis of the previously unknown tripodal ligand H4-1 is reported. The tetradentate ligand is equipped with a completely unsymmetrical N2OS donor set. It reacts with Ni(OAc)2. 4H2O or Ni(ClO4)2.6H2O to give the multinuclear nickel(II) complexes [Ni(H-1-Imin)(OAc)]2 (2) (which contains a coordinated Schiff base obtained by reation of the primary amine with the acetone solvent) and [Ni3(H3-1)(H2-1)2]-ClO4.H2O.3 MeCN (3), respectively. A solution of 3 in DMF is readily oxidized upon exposure to air or by aqueous H2O2 to yield [Ni(H2-1-sulfinate)]2. 2MeOH (4). The molecular structures of 2-4 have been determined by X-ray diffraction. Complex 2 exhibits a strongly distorted, octahedral coordination geometry around each nickel(II)ion. The primary amino group of the ligand in this case reacted with the solvent acetone to yield a Schiff base which is coordinated to the metal center. The molecular structure of the trinuclear complex cation in 3 consists of two subunits: a nickel atom with a square-planar N2S2 coordination geometry and two other nickel atoms with a trigonal-bipyramidal N2O2S coordination environment. The dinuclear complex 4 shows distorted octahedral geometry around each nickel(II) ion. The thiolato groups of the ligands are oxidized to sulfinato groups which are O,O-bound to the nickel center. This coordination mode is unusual for nickel sulfinate complexes.  相似文献   

8.
Complexes of 5-(phenylazo)-2-thiohydantoin (L1) and 5-(2-hydroxyphenylazo)-2-thiohydantoin (HL2) with Co(II), Ni(II) and Cu(II) salts have been synthesised and characterized by elemental analysis, conductivity, magnetic susceptibility, UV-Vis, IR, ESR and TG studies. The magnetic and spectral data suggested octahedral geometry for [L1M(OAc)2(H2O)2xH2O {M=Nill and Cull} and [L1CuCl2(H2O)]·H2O (dimeric form for the latter), trigonal bipyramidal geometry for [L2Co(OAc)(H2O)]·2H2O, square pyramidal geometry for [L2Ni(OAc)(H2O)]·H2O and square planar geometry for [L2CuCl]·2H2O. TG studies confirmed the chemical formulations of these complexes and showed that their thermal degradation takes place in three to five steps, depending on the type of the ligand and the geometry of the complex. The kinetic parameters (n, E#, A, ΔH#, ΔS# and ΔG#) of the thermal decomposition stages were computed using the Coats-Redfern and other standard equations and are discussed.  相似文献   

9.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

10.
Metal complexes with the general formula [ML(H2O)(CH3OH)x]·nH2O·(CH3OH)y(NO3)z [M=Cu(II), Ni(II), Co(II), VO(IV), Cr(III), Cd(II), Zn(II) or UO2(VI); x=0-2; y=0,1; z=0,1; n=0-2, 6 and L=hydrazone (H2L) derived from condensation of thiosemicarbazide with 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione. The synthesized ligand and its metal complexes have been characterized on the basis of elemental analyses, spectral and magnetic studies as well as thermal gravimetric analysis (TGA). The deprotonated ligand acts as a dibasic tridentate (ONS) via phenolate oxygen, azomethine (CN), and thiolate (C-S) groups. Copper(II) complex exhibits square planar geometry. Nickel(II), chromium(III) and dioxouranium(VI) complexes exhibit octahedral geometry. Cobalt(II), cadmium(II) and zinc(II) complexes showed tetrahedral geometry, whereas oxovanadium(IV) reveals square pyramidal geometry. Thermal analysis are investigated and showed either three or four thermal decomposition steps. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The molecular parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data such as IR and TGA results.  相似文献   

11.
Manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and chromium(III) complexes of (E)-2-(2-(2-hydroxybenzylidene)hydrazinyl)-2-oxo-N-phenylacetamide were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment. Mononuclear complexes are obtained with 1:1 molar ratio except [Mn(HOS)(2)(H(2)O)(2)] and [Co(OS)(2)](H(2)O)(2) complexes which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a monobasic bidentate one and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the carbonyl oxygen atom, azomethine nitrogen atom and the hydroxyl oxygen. Moreover, the ligand behaves as a dibasic tridentate and coordination occurs via the enolic oxygen, azomethine nitrogen and the hydroxyl oxygen atoms. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complexes possesses a square planar geometry. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes. The protonation constant of the ligand and the stability constant of metal complexes were determined pH-metrically in 50% (v/v) dioxane-water mixture at 298 K and found to be consistent with Irving-Williams order. Moreover, the minimal inhibitory concentration (MIC) of these compounds against Staphylococcus aureus, Escherechia coli and Candida albicans were determined.  相似文献   

12.
In methanol or chloroform/methanol solutions, reactions of Cltpy or MeOtpy (Rtpy = 4'-R-2,2':6',2'-terpyridine) with CoX(2)·xH(2)O (X(-) = Cl(-), [OAc](-), [NO(3)](-) or [BF(4)](-)) result in the formation of equilibrium mixtures of [Co(Rtpy)(2)](2+) and [Co(Rtpy)X(2)]. A study of the solution speciation has been carried out using (1)H NMR spectroscopy, aided by the dispersion of signals in the paramagnetically shifted spectra; on going from a low- to high-spin cobalt(II) complex, proton H(6) of the tpy ligand undergoes a significant shift to higher frequency. For R = Cl and X(-) = [OAc](-), increasing the amount of CD(3)OD in the CD(3)OD/CDCl(3) solvent mixture affects both the relative proportions of [Co(Cltpy)(2)](2+) and [Co(Cltpy)(OAc)(2)] and the chemical shifts of the (1)H NMR resonances arising from [Co(Cltpy)(OAc)(2)]. When the solvent is essentially CDCl(3), the favoured species is [Co(Cltpy)(OAc)(2)]. For the 4'-methoxy-2,2':6',2'-terpyridine, the speciation of mono- and bis(terpyridine)cobalt(II) complexes depends upon the anion, solvent and ligand:Co(2+) ion ratio. The (1)H NMR spectrum of [Co(MeOtpy)(2)](2+) is virtually independent of anion and solvent. In contrast, the signals arising from [Co(MeOtpy)X(2)] depend on the anion and solvent. In the case of X(-) = [BF(4)](-), we propose that the mono(tpy) complex formed in solution is [Co(MeOtpy)L(n)](2+) (L = H(2)O or solvent, n = 1-3). The formation of mono(tpy) species has been confirmed by the solid state structures of [Co(Cltpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(NO(3)-O)(2)(OH(2))] and [Co(MeOtpy)Cl(2)]. The single crystal structure of the cobalt(III) complex [Co(Cltpy)Cl(3)]·CHCl(3) is also reported.  相似文献   

13.
Dicopper(II) complexes of two new 3,5-disubstituted-pyrazole-based ligands, bis(quadridentate) macrocyclic ligand (L1)(2-) and bis(terdentate) acyclic ligand (L2)(-), were synthesised by Schiff base condensation of 3,5-diformylpyrazole and either one equivalent of 1,3-diaminopropane or two equivalents of 2-(2-aminoethyl)pyridine in the presence of one or two equivalents of copper(II) ions, respectively. Copper(II) acetate monohydrate was employed in the synthesis of [Cu(2)(L1)(OAc)(2)], [Cu(2)(L2)(H(2)O)(2)(OAc)(3)] and [Cu(II)(2)(L1)(NCS)(2)]; in the last of these one equivalent of NaNCS per copper(II) ion was also added. The fourth complex, [Cu(2)(L2)(NCS)(2)(DMF)]BF(4), was prepared using copper(II) tetrafluoroborate hexahydrate, along with two equivalents of NaOH and six of NaSCN. All four of these dimetallic complexes have been characterised by single crystal X-ray diffraction: the two macrocyclic complexes are the first such Schiff base complexes to be so characterised. A feature common to all four of the structures is bridging of the two copper(II) centres by the pyrazolate moiety/moieties. The structure determinations show that the coordination mode of the acetate groups in both [Cu(2)(L1)(OAc)(2)].2MeOH.H(2)O and [Cu(2)(L2)(H(2)O)(2)(OAc)(3)] is unidentate as had been tentatively predicted by analysis of the infrared spectra (DeltaOCO of 199 and 208 cm(-1), respectively). The magnetochemical studies of the macrocyclic complexes, over the temperature range 4-300 K, revealed strong antiferromagnetic coupling with J = -169 and -213 cm(-1) for [Cu(2)(L1)(OAc)(2)].2H(2)O and [Cu(II)(2)(L1)(NCS)(2)].DMF respectively. The J values have been discussed in relation to a published correlation involving the CuN(pyrazolate)N(pyrazolate) angles.  相似文献   

14.
The photoreaction of the chromium(III) octaethylpoprhyrin complex, [Cr(OEP)(Cl)(L)] (L = H2O, Py, OPPh3), in dichloromethane was studied using laser flash photolysis technique. Laser irradiation causes the generation of a coordinately unsaturated intermediate [Cr(OEP)(Cl)], which reacts with ligands in solution to give the parent complex, [Cr(OEP)(Cl)(L)], or a transient species, [Cr(OEP)(Cl)(H2O)], when L = Py or OPPh3. Once produced [Cr(OEP)(Cl)(H2O)] eventually exchanges the axial H2O ligand with L to regenerate [Cr(OEP)(Cl)(L)]. The kinetics of the axial ligand substitution reaction was followed spectrophotometrically, and the ligand-concentration dependence of the ligand exchange rate revealed that the reaction occurs via a limited dissociative mechanism. The photoreaction of [Cr(OEP)(Cl)(OPPh3)] containing excess PPh3 in the bulk solution leads to the unfavorable coordination of the PPh3 molecule to the chromium ion to give a transient complex, [Cr(OEP)(Cl)(PPh3)]. The dynamic and thermodynamic properties of [Cr(OEP)(Cl)(PPh3)] in solution are discussed on the basis of the kinetic parameters of the dissociation and association reactions of the PPh3 ligand together with the steric aspect of the molecular structure of the related complexes.  相似文献   

15.
Inamo M  Eba K  Nakano K  Itoh N  Hoshino M 《Inorganic chemistry》2003,42(19):6095-6105
A nanosecond laser photolysis study was carried out for the Cr(III) porphyrin complexes of 2,3,7,8,12,13,17,18-octaethylporphyrin, [Cr(OEP)(Cl)(L)], and of 5,10,15,20-tetramesitylporphyrin, [Cr(TMP)(Cl)(L)], in toluene containing water and an excess amount of L (L = axial ligand). The laser photolysis generates the triplet excited state of the parent complex as well as a five-coordinate complex, [Cr(porphyrin)(Cl)], produced by the photodissociation of the axial ligand L. The yields for the formation of the triplet state and the photodissociation of L are found to markedly depend on the nature of both L and porphyrin ligand. The five-coordinate [Cr(porphyrin)(Cl)] readily reacts with both H(2)O and L in the bulk solution to give [Cr(porphyrin)(Cl)(H(2)O)] and [Cr(porphyrin)(Cl)(L)], respectively. The axial H(2)O ligand in [Cr(porphyrin)(Cl)(H(2)O)] is then substituted by the ligand L to regenerate the original complex [Cr(porphyrin)(Cl)(L)]. In principle, the substitution reaction takes place by the dissociative mechanism: the first step is the dissociation of H(2)O from [Cr(porphyrin)(Cl)(H(2)O)], followed by the reaction of the five-coordinate [Cr(porphyrin)(Cl)] with the ligand L to regenerate [Cr(porphyrin)(Cl)(L)]. The rate constants for this ligand substitution reaction are found to exhibit bell-shaped ligand concentration dependence. The detailed kinetic analysis revealed that both ligands L and H(2)O in toluene make a hydrogen bond with the axial H(2)O ligand in [Cr(porphyrin)(Cl)(H(2)O)] to yield dead-end complexes for the substitution reaction. The reaction mechanisms are discussed on the basis of the substituent effects of the porphyrin peripheral groups and the kinetic parameters determined from the temperature dependence of the rate constants.  相似文献   

16.
Reaction of 2-(arylazo)phenols with [Ru(PPh(3))(2)(CO)(2)Cl(2)] affords a family of organometallic complexes of ruthenium(II) of type [Ru(PPh(3))(2)(CO)(CNO-R)], where the 2-(arylazo)phenolate ligand (CNO-R; R = OCH(3), CH(3), H, Cl, and NO(2)) is coordinated to the metal center as tridentate C,N,O-donor. Another group of intermediate complexes of type [Ru(PPh(3))(2)(CO)(NO-R)(H)] has also been isolated, where the 2-(arylazo)phenolate ligand (NO-R) is coordinated to the metal center as bidentate N,O-donor. Structures of the [Ru(PPh(3))(2)(CO)(NO-OCH(3))(H)] and [Ru(PPh(3))(2)(CO)(CNO-OCH(3))] complexes have been determined by X-ray crystallography. All the complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. Both the [Ru(PPh(3))(2)(CO)(NO-R)(H)] and [Ru(PPh(3))(2)(CO)(CNO-R)] complexes show two oxidative responses on the positive side of SCE.  相似文献   

17.
Nine dinuclear copper(II) complexes with hxta5- ligands [H5hxta = N,N'-(2-hydroxy-1,3-xylylene)-bis-(N-carboxymethylglycine)]: [Cu2(MeO-hxtaH)(H2O)2] x 4H2O (1), [Na(micro-H2O)2(H2O)6][Cu2(Cl-hxta)(H2O)3]2 x 6H2O (2), [Cu(H2O)6][Cu2(Me-hxta)(H2O)2](NO3) x 2H2O (3), [Cu2(R-hxtaH)(H2O)3] x 3H2O [R = Cl (4), CH3 (5), and MeO (6)], [Cu2(MeO-hxtaH2)(micro-X)(CH3OH)] x 3CH3OH [X = Cl (7), Br (8)] and K5Na(micro-H2O)10[Cu2(micro-CO3)(Me-hxta)]2 x 4H2O (9), have been synthesized and structurally characterized. In complexes 4-7, the dinuclear units are linked via novel pairwise supramolecular interactions involving the ligand carboxylate groups. The intra- and intermolecular magnetic interactions have been quantified, and the coupling constants have been related to the structural geometries.  相似文献   

18.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

19.
Nickel(II) and copper(II) complexes are synthesized with a novel tetradentate macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetraphenyltricyclo[15,3,1,1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) and characterized by the elemental analysis, magnetic susceptibility measurements, mass, (1)H NMR, IR, electronic and EPR spectral studies. All the complexes are non-electrolytic in nature. Thus, these may be formulated as [M(L)X(2)] [M=Ni(II), Cu(II) and X=Cl(-), NO(3)(-) and (1/2)SO(4)(2-)]. Ni(II) and Cu(II) complexes show magnetic moments corresponding to two and one unpaired electron, respectively. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Ni(II) and tetragonal geometry for Cu(II) complexes.  相似文献   

20.
Reaction of dichlorotris(triphenylphosphine) ruthenium(II) [RuCl(2)(PPh(3))(3)] with 1,8-bis(2-pyridyl)-3,6-dithiaoctane (pdto), a (N(2)S(2)) tetradentate donor, yields a new compound [Ru(pdto)(PPh(3))Cl]Cl (1), which has been fully characterized. (1)H and (31)P NMR studies of 1 in acetonitrile at several temperatures show the substitution of both coordinated chloride and triphenylphosphine with two molecules of acetonitrile, as confirmed by the isolation of the complex [Ru(pdto)(CH(3)CN)(2)]Cl(2) (2). Cyclic voltammetric and spectroelectrochemical techniques allowed us to determine the electrochemical behavior of compound 1. The substitution of the chloride and triphenylphosphine by acetonitrile molecules in the Ru(II) coordination sphere of compound 1 was also established by electrochemical studies. The easy substitution of this complex led us to use it as starting material to synthesize the substituted phenanthroline coordination compounds with (pdto) and ruthenium(II), [Ru(pdto)(4,7-diphenyl-1,10-phenanthroline)]Cl(2).4H(2)O (3), [Ru(pdto)(1,10-phenanthroline)]Cl(2).5H(2)O (4), [Ru(pdto)(5,6-dimethyl-1,10-phenanthroline)]Cl(2).5H(2)O (5), [Ru(pdto)(4,7-dimethyl-1,10-phenanthroline)]Cl(2).3H(2)O (6), and [Ru(pdto)(3,4,7,8-tetramethyl-1,10-phenanthroline)]Cl(2).4H(2)O (7). These compounds were fully characterized, and the crystal structure of 4 was obtained. Cyclic voltammetric and spectroelectrochemical techniques allowed us to determine their electrochemical behavior. The electrochemical oxidation processes in these compounds are related to the oxidation of ionic chlorides, and to the reversible transformation from Ru(II) to Ru(III). On the other hand, a single reduction process is associated to the reduction of the substituted phenanthroline in the coordination compound. The E(1/2) (phen/phen(-)) and E(1/2) (Ru(II)/Ru(III)) for the compounds (3-7) were evaluated, and, as expected, the modification of the substituted 1,10-phenanthrolines in the complexes also modifies the redox potentials. Correlations of both electrochemical potentials with pK(a) of the free 1,10-phenathrolines, lambda(max) MLCT transition band, and chemical shifts of phenanthrolines in these complexes were found, possibly as a consequence of the change in the electron density of the Ru(II) and the coordinated phenanthroline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号