首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The hot luminescent reaction zones of CO2-laser-induced pyrolysis flames using SiH4/C2H2 gas mixtures with different silane to acetylene ratios and with and without diborane additives were investigated by means of H2 Q-branch CARS spectroscopy, leading to spatial temperature profiles in gas flow direction. In the case of B2H6 additive to the stoichiometric SiH4/C2H2 mixture a high temperature plateau ( 800–1000 K) of the reactant gas volume develops already several millimetres before reaching the CO2-laser focus line. This precursor preheating zone could be explained by the catalytic effect of boron atoms or boron-containing intermediate species in the flame. A similar behaviour for acetylene-rich flames operating at half laser power was not observed.  相似文献   

2.
This paper reviews the various physico-chemical processes responsible for actual linewidths encountered in high-resolution coherent anti-Stokes Raman spectroscopy (CARS). Most of the experimental data are based on linewidth measurements using a pulseamplified CARS spectrometer with an emission bandwidth (FWHM) of 2×10–3 cm–1. Detailed rotational and vibrational relaxation constants have been obtained from the analysis of theQ-branch profiles of C2H2, N2, CH4, and SiH4.  相似文献   

3.
Absorption spectra of the gases SiH4, NH3, C2H2 and of SiH4/Ar and SiH4/B2H6 mixtures have been measured in the spectral range of the CO2 laser from 9.2 to 10.8 µm. In agreement with literature, silane shows the highest absorption (absorption coefficient = 3.3 × 10–2 Pa–1 m–1). The deviation of the measured absorption behaviour of silane from literature, as far as the pressure dependence is concerned, can be explained by the enhanced spectral energy density in our experiment. This is confirmed by a rate-equation model involving the basic mechanisms of V-V and V-T energy transfer between vibrationally excited silane molecules. In contrast to silane, the absorption coefficient of NH3 at the 10P(20) laser line is 4.5 × 10–4 Pa–1 m–1 atp = 20 kPa and has its maximum of 4.5 × 10–3 Pa–1 m–1 at the 10R(6) laser line. For C2H2 and B2H6, is even less ( 2.1 Ò 10–5 Pa–1 m–1 for C2H2).  相似文献   

4.
Laser-ionization Time-Of-Flight (TOF) mass-spectrometric studies have been carried out on the 532 nm and 1064 nm laser ablation products from a nitrogen-rich polymer. The polymer used had an elemental composition of C6.0N8.9H3.4 and consisted of C=N, C-N, and N-H chemical bonds. The TOF mass spectra observed were composed of various peaks (150 amu) depending on the ablation laser wavelength. The primary peaks were assigned to C+, CN+, CHnN+ 2 (n=1–3) and C2H2N+ 3 for 532 nm ablation, and C+, C+ 3, HCN+, HCCN+, CH2NH+, HNCN+, H3NCN+, and C4H4N+ 7 for 1064 nm ablation. The flight velocity distributions with peak velocities ranging from 8.6×103 cm/s to 3.8×104 cm/s were measured for these products. The distinct velocity distributions observed between small and large products indicate the presence of two origins in the fragment ejection process from the polymer for both 532 nm and 1064 nm ablation. Furthermore, we suggest an importance of the translational energy of the fragments for the product generation in the laser plume.  相似文献   

5.
The effects of temperature and pressure on the formation and decomposition of C6H5C2H2O2 in the C6H5C2H2 + O2 reaction have been investigated at temperatures from 298 to 378 K by directly monitoring the C6H5C2H2O2 radical in the visible region by cavity ringdown spectrometry (CRDS). The rate constant for the C6H5C2H2 + O2 association and that for fragmentation of C6H5C2H2O2 were found to be k1 (C6H5C2H2 + O2 → C6H5C2H2O2) = (3.20 ± 1.19) × 1011 exp(+760/T) cm3 mol−1 s−1 and k2 (C6H5C2H2 O2 → C6H5CHO + HCO) = (1.68 ± 0.13) × 104 s−1, respectively. Additional kinetic measurements by pulsed laser photolysis/mass spectrometry show that C6H5CHO was produced in the C6H5C2H2 + O2 reaction as predicted and the formation of C6H5CHO from the decomposition of C6H5C2H2O2 is temperature-independent, consistent with the CRDS experimental data.  相似文献   

6.
The primary product formation of the C3H5 + O reaction in the gas phase has been studied at room temperature. Allyl radicals (C3H5) and O atoms were generated by laser flash photolysis at λ = 193 nm of the precursors C3H5Cl, C3H5Br, C6H10 (1,5-hexadiene), and SO2, respectively. The educts and the products were detected by using quantitative FTIR spectroscopy. The combined product analysis of the experiments with the different precursors leads to the following relative branching fractions: C3H5 + O → C3H4O + H (47%), C2H4 + H + CO (41%), H2CO + C2H2 + H (7%), CH3CCH + OH and CH2CCH2 + OH (<5%). The rate of reaction has been studied relative to CH3OCH2 + O and C2H5 + O in the temperature range from 300 to 623 K. Here, the radicals were produced via the fast reactions of propene, dimethyl ether, and ethane, respectively, with atomic fluorine. Laser-induced multiphoton ionization combined with TOF mass spectrometry and molecular beam sampling from a flow reactor was used for the specific and sensitive detection of the C3H5, C2H5, and CH3COCH2 radicals. The rate coefficient of the reaction C3H5 + O was derived with reference to the reaction C2H5 + O leading to k(C3H5 + O) = (1.11 ± 0.2) × 1014 cm3/(mol s) in the temperature range 300-623 K. The C3H5 + O rate and channel branching, when incorporated in a suitable detailed reaction mechanism, have a large influence on benzene and allyl concentration profiles in fuel-rich propene flames, on the propene flame speed, and on propene ignition delay times.  相似文献   

7.
Optical emission from a laser-induced plasma plume is recorded during KrF excimer laser ablation of graphite in a gas mixture of Ar and H2 (3%) for deposition of diamond-like thin films. At sub-GW/cm2 laser intensities the spectrum is dominated by the bands of C2 and CN. From the band intensities, the vibrational temperatures of both radicals are calculated to be 12–15×103 K, and their concentrations are estimated to be 5×1014 cm–3 and 2×1014 cm–3, respectively.  相似文献   

8.
Thermal reaction rates for the gas-phase reaction Mu+C2H6MuH+C2H5 have been measured bySR over the temperature range 510–730 K. The usual Arrhenius expression,k=Aexp(–E a /RT), fits the data well, giving parametersA=1.0×10–9 cm3 molecule–1 s–1 andE a =15.35 kcal/mol. The activation energyE a is 5.5 kcal/mol higher than for the H atom variant of this reaction, indicating a marked difference in reaction dynamics. Preliminary analysis indicates a still greater difference between Mu and H for the corresponding CH4 reaction.  相似文献   

9.
Small SiC nanoparticles (10 nm diameter) have been grown in a flow reactor by CO2 laser pyrolysis from a C2H2 and SiH4 mixture. The laser radiation is strongly absorbed by SiH4 vibration. The energy is transferred to the reactive medium and leads to the dissociation of molecules and the subsequent growth of the nanoparticles. The reaction happens with a flame. The purpose of the experiments reported in this paper is to limit the size of the growing particles to the nanometric scale for which specific properties are expected to appear. Therefore the effects of experimental parameters on the structure and chemical composition of nanoparticles have been investigated. For a given reactive mixture and gas velocity, the flame temperature is governed by the laser power. In this study, the temperature was varied from 875°C to 1100°C. The chemical analysis of the products indicate that their composition is a function of the temperature. For the same C/Si atomic ratio in the gaseous phase, the C/Si ratio in the powder increases from 0.7 at 875°C up to 1.02 at 1100°C, indicating a growth mechanism limited by C2H2 dissociation. As expected, X-ray diffraction has shown an improved crystallisation with increasing temperature. Transmission electron microscopy observations have revealed the formation of 10 nm grains for all values of laser power (or flame temperature). These grains appear amorphous at low temperature, whereas they contain an increasing number of nanocrystals (2 nm diameter) when the temperature increases. These results pave the way to a better control of the structure and chemical composition of laser synthesised SiC nanoparticles in the 10 nm range.  相似文献   

10.
A photoacoustic intracavity configuration is presented; a resonant photoacoustic cell excited in its first longitudinal mode is placed inside the cavity of a CO2 waveguide laser. Due to the high laser power and the sharp intracavity focus, saturation effects occur in the excitation and relaxation process of absorbing C2H4 molecules. A more optimal configuration is applied to measure the C2H4 emission of several Rumex species. A detection sensitivity of 6 ppt (parts per trillion) C2H4 is reached, equivalent to a minimal detectable absorption of 1.8×10–10 cm–1.  相似文献   

11.
The sensitive detection of H2 molecules was demonstrated by means of twophoton excited laser-induces fluorescence spectroscopy with a narrow-band ArF excimer laser. A detection limit of 2×1014 cm–3 was obtained with an excitation power of 150 kW. This is already comparable with that obtained by the coherent anti-Stokes Raman scattering (CARS). This technique was successfully applied to measure a spatial distribution of H2 in a town-gas burner.  相似文献   

12.
This work reports measurements of the absolute rate coefficients and Rice-Ramsperger-Kassel-Markus (RRKM) master equation (ME) simulations of the C2H3 + C3H6 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 15, 25, and 100 Torr. Vinyl radicals were generated by laser photolysis of vinyl iodide at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. A weighted modified Arrhenius fit to the experimental rate constant is k1 = (1.3 ± 0.2) × 10−12 cm3 molecule−1 s−1(T/1000)1.6 exp[−(1510 ± 80/T)]. Fifteen stationary points and 48 transition states on the C5H9 potential energy surface (PES) were calculated using the G3 method in Gaussian 03. RRKM/ME simulations were performed using VariFlex on a simplified PES to predict pressure dependent rate coefficients and branching fractions for the major channels. For temperatures between 350 and 700 K, the calculated rate coefficient agrees with the experimental rate coefficient within 20%. At low temperatures, the primary products are the initial adducts 4-penten-2-yl and 2-methyl-3-buten-1-yl. At higher temperatures, the dominant products are 1,3-butadiene + methyl, allyl + ethene, and 1,3-pentadiene + H. Although C2H3 + C3H6 → allyl + ethene is thermodynamically favored, the simulations predict that it does not become the dominant product until 1700 K.  相似文献   

13.
The donor-donor (D-D) energy migration interaction parameter CDD in high-concentration Nd3+-doped YAG laser crystal is estimated, for the first time, by using the Yokota-Tanimoto (Y-T) model and the spectral overlap model (SOM) of Kushida. Firstly, the experimental luminescence decay curves of 4F3/2 state of Nd3+ ions in YAG laser crystal at room temperature for 2.0 and 3.0 at% Nd3+ concentrations reported by Mao are fitted successfully by using the Y-T model and the parameter CDD is obtained to be 1.50×10−39 cm6/s. Secondly, the parameter CDD is also directly calculated by using the SOM of Kushida: CDD is calculated to be 2.73×10−39 cm6/s. By comparing the energy migration interaction parameter CDD and the donor-acceptor (D-A) energy transfer interaction parameter CDA (1.794×10−40 cm6/s), it is concluded that energy migration rate between Nd3+ ions in YAG laser crystal was about 11 times larger than energy transfer rate, and that energy migration would play a very important role in high-concentration Nd3+ -doped YAG laser crystal.  相似文献   

14.
Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame (T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10?5 OD (1σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm?1 of up to 2.1 ppm?m. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.  相似文献   

15.
Laser-ionization time-of-flight mass spectrometry has been used to probe laser-ablation products from a nitrogen-rich polymer at a wavelength of 308 nm. The ablation products at a laser fluence of 150 mJ/cm2 showed, similar to 532 nm ablation studied previously [18], two strong peaks due to neutral species that were assigned to C+ and CN+, as well as several weak peaks that were assigned to CH+, HCN+, HCNH+, HnN–CN+ (n=1–3), and H2N–C=N–CN+ or H2N–C=N–CN+. The ablation products at 870 mJ/cm2 revealed, in addition to a broad signal due to ionic products generated directly by the ablation laser, several peaks due to neutral products that were assigned to C+, C 2 + , C 3 + , CN+, HCN+, HCNH+, and NCCN+. The most probable flight velocities for major neutral products are 5.7×104 cm/s at 150 mJ/cm2 and 2.3–2.7×104 cm/s at 870 mJ/cm2. The results at a laser fluence of 150 mJ/cm2 support the finding that the translational energy of the tragments has importance for the collision-induced product generation in the laser plume, as suggested earlier [18]. Furthermore, the product generation at 870 mJ/cm2 is interpreted by the ejection of small neutral and ionic fragments, and subsequent reactions among the fragments.  相似文献   

16.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

17.
We present in this work the direct observation of HO2 radicals after irradiation of benzene C6H6 at 248 nm in the presence of O2. HO2 radicals have been unambiguously identified using the very selective and sensitive detection of continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled to a laser photolysis reactor. HO2 radicals were detected in the first vibrational overtone of the OH stretch at 6638.20 cm-1, using a DFB diode laser. This reaction might be important because 248 nm photolysis of H2O2 has often been used in the past for studying the OH-initiated degradation of C6H6, often using a large excess of C6H6 over H2O2. The possible importance of the title reaction with respect to these former laboratory studies has been quantified through comparison with HO2 signals obtained from 248 nm photolysis of H2O2: one obtains under our conditions (excess O2 and total pressure of 6.6 kPa helium) from the 248 nm irradiation of identical initial concentrations [C6H6]=[H2O2] the following relative initial radical concentrations: [HO2 ]=(0.28±0.05)×[OH]. Experiments with various O2 concentrations have revealed that the origin of the HO2 radicals is not the reaction of H-atoms with O2, but must originate from the reaction of O2 with excited C6H6 *. The quantum yield of C6H6 * formation has been deduced to ϕ=0.2±0.1. PACS  42.62.Fi; 82.20.Pm; 82.33.Tb  相似文献   

18.
The possibility that the reaction between two cyclopentadienyl radicals (cC5H5) may lead to the production of naphthalene has been the subject of considerable theoretical and experimental studies. Though it has been proposed that this reaction may be the main channel for the formation of naphthalene in many combustion environments, the elementary mechanism leading from the initial adduct (C5H5_C5H5) to naphthalene is still not clear. In this study the portion of the C10H10 PES accessible to C5H5_C5H5 has been theoretically re-examined using density functional theory to locate stationary points and the CBS-QB3 computational protocol to determine energies. A new reaction pathway leading to the formation of a set of azulyl radicals was identified. Since it is known that azulyl radicals can easily decompose to naphthalene and atomic H, the proposed pathway provides an effective route for the formation of naphthalene. Channel specific kinetic constants were determined between 1100 K and 2000 K integrating the master equation for a PES comprising both this reaction pathway and the literature reaction pathway, which main product is the fulvalenyl radical. It was found that the main reaction channel is decomposition to reactants in the whole temperature range investigated and that the azulyl reaction channel is dominant over the fulvalenyl pathway up to 1450 K. The rate constants calculated at 1 bar for the azulyl and fulvalenyl reaction channels are 1014.72T(K)?0.853 exp(?3650/T(K)) and 1010.30T(K)0.951 exp(?7948/T(K)) cm3/mol/s, respectively. The rate constant for the formation of naphthalene through the azulyl channel is consistent with recent estimates based on the kinetic simulation of the pyrolysis and oxidation of cyclopentadiene.  相似文献   

19.
Single-pulse shock-tube experiments were used to study the thermal decomposition of selected oxygenated hydrocarbons: Ethyl propanoate (C2H5OC(O)C2H5; EP), propyl propanoate (C3H7OC(O)C2H5; PP), isopropyl acetate ((CH3)2HCOC(O)CH3; IPA), and methyl isopropyl carbonate ((CH3)2HCOC(O)OCH3; MIC) The consumption of reactants and the formation of stable products such as C2H4 and C3H6 were measured with gas chromatography/mass spectrometry (GC/MS). Depending on the considered reactant, the temperatures range from 716–1102 K at pressures between 1.5 and 2.0 bar. Rate-coefficient data were obtained from first-order analysis. All reactants primarily decompose by six-center eliminations: EP → C2H4 + C2H5COOH (propionic acid); PP → C3H6 + C2H5COOH; IPA → C3H6 + CH3COOH (acetic acid); MIC → C3H6 + CH3OC(O)OH (methoxy formic acid). Experimental rate-coefficient data can be well represented by the following Arrhenius expressions: k(EP → products) = 1013.49±0.16 exp(−214.95±3.25 kJ/mol/RT) s−1; k(PP → products) = 1012.21±0.16 exp(–191.21±2.79 kJ/mol/RT) s−1; k(IPA → products) = 1013.10±0.31 exp(–186.38±5.10 kJ/mol/RT) s−1; k(MIC → products) = 1012.43±0.29 exp(–165.25±4.46 kJ/mol/RT) s−1. The determination of rate coefficients was based on the amount of C2H4 or C3H6 formed. The potential energy surface (PES) of the thermal decomposition of these four reactants was determined with the G4 composite method. A master-equation analysis was conducted based on energies and molecular properties from the G4 computations. The results indicate that the length of a linear alkyl substituent does not significantly influence the rate of six-center eliminations, whereas the change from a linear to a branched alkyl substituent results in a significant reactivity increase. The comparison between rate-coefficient data also shows that alkyl carbonates have higher reactivity towards decomposition by six-center elimination than esters. The results are discussed in in the context of reactivity patterns of carbonyl compounds.  相似文献   

20.
In this work, nano sized SiC powders were mixed with Mg and B and reacted by either a one-step insitu or two-step method resulted in different level of C substitution. X-ray diffraction shows the presence of Mg2Si signifying that the reaction between SiC and Mg occurred leading to the release of C in samples reacted in one-step method. Moreover, the much reduced value of a-axis indicates C substitution took place. Resistivity measurements showed higher intragrain scattering owing to a higher density of defects and/or impurities. These samples also show higher Hirr and Hc2 at 20 K in comparison to samples with mainly unreacted SiC (hence lower C substitution). More importantly, their Jc’s are more insensitive to high magnetic field (>4 T) at 6 K. However, at 20 K the effect of C content on Jc(H) is less pronounced. Finally, the order of magnitude of Jc(H) at both 6 K and 20 K is rather dominated by pinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号