首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以聚L-酪氨酸膜为载体,固载DNA和辣根过氧化物酶(HRP)制备过氧化氢生物传感器.该传感器对H2O2表现出良好的催化还原特性,具有灵敏度高,稳定性好且易于制作等特点.其线性响应范围为: 2.0×10-6~1.1×10-2 mol/L,检出限为8.0×10-7 mol/L (S/N=3).  相似文献   

2.
以聚L-酪氨酸膜为载体,固载DNA和辣根过氧化物酶(HRP)制备过氧化氢生物传感器.该传感器对H2O2表现出良好的催化还原特性,具有灵敏度高,稳定性好且易于制作等特点.其线性响应范围为:2.0×10-6~1.1×10-2 mol/L,检出限为8.0×10-7 mol/L (S/N=3).  相似文献   

3.
制备了石墨烯-壳聚糖(GR-CS)纳米复合材料,并将之与辣根过氧化物酶(HRP)混合,构建了基于石墨烯-壳聚糖-辣根过氧化物酶的生物传感器(GR-CS-HRP/GC)。探针及循环伏安研究表明,该界面具有优异的电子传导能力、较大的比表面积和良好的生物相容性,对H2O2的还原显示出较好的电催化活性,在工作电位为-0.2 V,0.05 mol/L的磷酸盐缓冲盐溶液(PBS,pH 6.8)中,该酶传感器对过氧化氢响应灵敏度高,检测范围宽,测定H2O2的线性范围为5.0×10-7~2×10-3mol/L(相关系数为0.998)。检出限为2.0×10-7mol/L(S/N=3)。并且表现出良好的稳定性和高选择性。该电极用于实际样品中H2O2的测定,结果令人满意。  相似文献   

4.
通过在金电极表面自组装L-半胱氨酸,再分别吸附纳米金与辣根过氧化物酶(HRP)的方法,成功的制备了H2O2生物传感器.采用循环伏安法考察了传感器的电化学特性,电极对H2O2在浓度为2.1×10-6~3.6×10-3 mol/L的范围内呈线性,检出限为8.9×10-7 mol/L (S/N=3).该传感器具有稳定性好,线性范围宽,检出限低等优点,同时具有一定的抗干扰能力.  相似文献   

5.
采用巯基丁二胺镍(Ⅱ)(NiL-SH)自组装单分子层修饰金电极,制得测定H2O2的电流型生物传感器.NiL-SH在电极表面有一对可逆的氧化还原峰.传感器对H2O2的还原显示出快速电催化响应(<10 s),采用电子扫描电镜(SEM)和光电子能谱(XPS)对电极表面进行了表征,且计算了其自身电化学反应性质.研究了各种因素如pH、工作电位等对传感器响应电流的影响.循环伏安法测定H2O2的线性范围为5.0×10-6~3.0×10-3 mol/L(r=0.999),检出限为2.0×10-6 mol/L.该电极显示出模拟酶特性,测定米氏常数KMapp=2.78 mmol/L.对传感器的稳定性,灵敏度和选择性进行研究,并应用于实际样品测定.  相似文献   

6.
辣根过氧化酶(HRP)在Co/NH2/ITO离子注入电极上有一对良好的氧化还原峰,峰电位分别为Epc=-0.2 V,Epa=-0.01 V(vsAg/AgCl)。该修饰电极对H2O2具有催化作用,可以用作H2O2的生物传感器,峰电流与H2O2的浓度分别在1.0×10-10~2.0×10-8mol/L和2.0×10-8~1.0×10-7mol/L范围内呈线性关系,线性回归方程分别为Ip(mA)=2.2986+0.06632c(nmol/L)和Ip(mA)=3.5788+7.3053E-4c(nmol/L),相关系数分别为0.9972和0.9688。检出限为1.0×10-10mol/L。  相似文献   

7.
郑瑜  林祥钦 《分析化学》2008,36(5):604-608
玻碳电极上共价修饰上单分子层胆碱(Ch)可以显著提高电极的活性。本研究利用该电极上胆碱层带有的正电荷,牢固吸附带负电荷的纳米金溶胶,继而利用纳米金颗粒良好固载辣根过氧化物酶(HRP),制备出了基于HRP酶直接电化学的H2O2传感器。以阻抗谱、循环伏安等方法表征了修饰电极的性质。结果显示,该电化学传感器具有良好的催化活性,电活性HRP的表面浓度(Γ*)为1.2×10-9mol/cm2,米氏常数KMapp=1.55±0.11 mmol/L。该修饰电极在H2O2浓度1.2×10-6~3.2×10-3mol/L范围内有线性响应,检出限(S/N=3)为4.0×10-7mol/L。本修饰电极制备简单,选择性高,稳定性好,可以作为进一步构筑生物传感器的基础。  相似文献   

8.
基于硫堇/碳纳米管修饰金电极的过氧化氢生物传感器   总被引:1,自引:0,他引:1  
制备了以硫堇(TH)、纳米金(Nano-Au)及多壁碳纳米管(MWNT)修饰的H2O2生物传感器.探讨了工作电位、温度、pH对电极响应的影响,考察了电极的重现性、抗干扰能力及使用寿命.该传感器具有线性范围宽、检出限低、灵敏度高、稳定性好和抗干扰能力强等特点.其线性范围为7.0×10-7~4.0×10-3 mol/L;检出限为2.3×10-7 mol/L;灵敏度为0.13 A/(mol L-1 cm2);达到稳定电流所用时间《9 s.米氏常数为0.62 mmol/L,表明所固定的酶具有较高的生物活性.  相似文献   

9.
将辣根过氧化物酶(HRP)通过纳米技术和自组装技术固定于电极表面,制得了酶修饰电极.纳米金与HRP形成了静电复合物并高效地保持了HRP的生物活性,以对苯二酚作为电子媒介体,差示脉冲伏安法(DPV)研究生物酶电极测定H2O2的线性范围为5.0×10-6~1.0×10-3 mol/L,检测限为2.5×10-6 mol/L,线性方程为△I=0.34765+4.05553CH2O2(mM).酶电极的表观米氏常数(K(app))为0.0675 mmol/L.实验同时证明该生物酶电极具有良好的稳定性和使用寿命.  相似文献   

10.
将纳米金吸附辣根过氧化物酶(HRP)固定在多壁碳纳米管(MWNT)修饰的铂(Pt)电极上,利用MWNT对HRP的直接电化学催化特性及纳米金对蛋白质的强吸附能力制备了第3代H2O2生物传感器。实验结果表明,HRP在MWNT/Pt电极表面能进行有效和稳定的直接电子转移,HRP保持了其对H2O2还原的生物电催化活性,而且能快速(3S)地响应H2O2浓度的变化。HRP在修饰电极上的表观吸附量(Tr)为7.3×10^-10mol/cm^2,异相电子转移常数(Ks)为1.23s^-1。该传感器在-300mV时对H2O2响应的线性范瑚为1×10^-5~1×10^-3 mol/L(r=0.9968,n=4)。  相似文献   

11.
以石墨烯/纳米金修饰玻碳电极为基底, 用聚乙烯醇与离子液体复合物将辣根过氧化物酶固定于电极表面, 制备了过氧化氢生物传感器. 结果表明, 在0.1 mol/L HAc-NaAc+0.1mol/L KCl(pH=6.5)中, H2O2的氧化峰电流与其浓度在9.55×10-6~6.01×10-3 mol/L间呈良好线性关系, 检出限(3S/N)为3.3×10-7 mol/L. 用标准加入法做回收实验, 回收率在93.4%~100.5%之间. 该传感器对H2O2具有较高的灵敏度和较低的检测限, 稳定性和重现性良好, 使用寿命较长, 且制作成本低, 可多次重复使用.  相似文献   

12.
Chen X  Li C  Liu Y  Du Z  Xu S  Li L  Zhang M  Wang T 《Talanta》2008,77(1):37-41
Colloidal carbon microspheres (CMS) are dispersed in chitosan (CHIT) solution to form an organic-inorganic hybrid with excellent micro-environment for the immobilization of biomolecules. A novel amperometric biosensor for the determination of hydrogen peroxide (H(2)O(2)) has been constructed by entrapping horseradish peroxidase (HRP) in as-synthesized CMS/CHIT hybrid. The modification of glassy carbon electrode is made by a simple solution-evaporation method. The electrochemical properties of the biosensor are characterized in electrochemical methods. The proposed biosensor shows high sensitive determination and fast response to H(2)O(2) at -0.15 V. The constructed HRP/CHIT/CMS/GC electrode also exhibits a fine linear correlation with H(2)O(2) concentration. The calculated value of the apparent Michaelis-Menten constant, 2.33 mM, suggests that the HRP in CMS/CHIT hybrid keeps its native bioactivity and has high affinity for H(2)O(2).  相似文献   

13.
Wang J  Liu G  Lin Y 《The Analyst》2006,131(4):477-483
We report a flow injection amperometric choline biosensor based on the electrostatic assembly of the choline oxidase (ChO) enzyme and a bienzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternately assembling a cationic poly(diallydimethylammonium chloride) (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, a bioactive nanocomposite film of PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and PDDA/ChO/PDDA/CNT (ChO/CNT) was fabricated on the GC surface. Owing to the electrocatalytic effect of carbon nanotubes, the measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. The ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g., applied potential, flow rate, etc., were optimized and potential interference was examined. The response time for this choline biosensor is fast (few seconds). The linear range of detection for the choline biosensor is from 5.0 x 10(-5) to 5.0 x 10(-3) M and the detection limit is about 1.0 x 10(-5) M.  相似文献   

14.
《Electroanalysis》2003,15(3):219-224
A novel hydrogen peroxide biosensor has been constructed based on the characteristics of the carbon nanotube. The multiwall carbon nanotube (MWNT) was used as a coimmobilization matrix to incorporate horseradish peroxidase (HRP) and electron transfer mediator methylene blue (MB) onto a glassy carbon electrode surface. Cyclic voltammetry and amperometric measurements were employed to demonstrate the feasibility of methylene blue as an electron carrier between the immobilized peroxidase and the surface of glassy carbon electrode. The amperometric response of this resulting biosensor to H2O2 shows a linear relation in the range from 4 μM to 2 mM. The detection limit was 1 μM when the signal to noise ratio is 3. The presence of dopamine and ascorbic acid hardly affects the sensitive determination of H2O2. This biosensor also possesses very good stability and reproducibility.  相似文献   

15.
研究了掺杂多壁碳纳米管(MWNT)改性聚溴甲酚绿膜(PBG),以不同修饰方法制备了4种修饰电极,用扫描电镜、交流阻抗及循环伏安法等对电极进行表征。结果表明:4种修饰电极的电活化面积均得到明显提高,其中以层层修饰制备的聚溴甲酚绿膜/多壁碳纳米管复合膜(PBG/MWNT/GC)电极最能发挥MWNT和PBG的电活性。将电极用于8-羟基喹啉(8-HQ)电化学行为的研究,结果表明:4种修饰电极的伏安响应明显提高,且8-HQ在PBG/MWNT/GC上的氧化峰电位负移最多,峰电流最大,约为裸玻碳电极的4.5倍,电催化作用显著增强。8-HQ在PBG/MWNT/GC上电极反应的电子转移数和质子数均为1,是吸附控制的不可逆电氧化过程,氧化峰电流Ip与浓度c在4.0×10-6~3.5×10-4mol/L范围内呈良好的线性关系,r=-0.997 2,检出限(S/N=3)为1.96×10-8mol/L。PBG/MWNT/GC修饰电极可实现8-HQ的快捷、简便测定。  相似文献   

16.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

17.
《Electroanalysis》2006,18(16):1564-1571
The work details the electrocatalysis of oxygen reduction reaction (ORR) in 0.5 M H2SO4 medium on a modified electrode containing a film of polyaniline (PANI) grafted multi‐wall carbon nanotube (MWNT) over the surface of glassy carbon electrode. We have fabricated a novel modified electrode in which conducting polymer is present as connected unit to MWNT. The GC/PANI‐g‐MWNT modified electrode (ME) is fabricated by electrochemical polymerization of a mixture of amine functionalized MWNT and aniline with GC as working electrode. Cyclic voltammetry and amperometry are used to demonstrate the electrocatalytic activity of the GC/PANI‐g‐MWNT‐ME. The GC/PANI‐g‐MWNT‐ME exhibits remarkable electrocatalytic activity for ORR. A more positive onset potential and higher catalytic current for ORR are striking features of GC/PANI‐g‐MWNT‐ME. Rapid and high sensitivity of GC/PANI‐g‐MWNT‐ME to ORR are evident from the higher rate constant (7.92×102 M?1 s?1) value for the reduction process. Double potential chronoamperometry and rotating disk and rotating ring‐disk electrode (RRDE) experiments are employed to investigate the kinetic parameters of ORR at this electrode. Results from RDE and RRDE voltammetry demonstrate the involvement of two electron transfer in oxygen reduction to form hydrogen peroxide in acidic media.  相似文献   

18.
制备了纳米金/多壁碳纳米管(MWNT)复合材料修饰电极,并将此电极应用于鲁米诺电化学发光体系.电化学发光实验表明,此复合材料修饰电极同时具备了纳米金和碳纳米管的催化性能.此外通过电极活性表面积测算、电化学交流阻抗实验等方法研究了纳米金和碳纳米管在此体系催化过程中的作用.纳米金/碳纳米管修饰电极具有良好的重现性,可以广泛应用于鲁米诺电化学发光测定体系.  相似文献   

19.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

20.
We constructed a biosensor by electrodeposition of gold nano-particles (AuNPs) on glassy carbon (GC) and subsequent formation of a 4-mercaptobenzoic acid self-assembled monolayer (SAM). The enzyme horseradish peroxidase (HRP) was then covalently immobilized onto the SAM. Two forms of HRP were employed: non-modified and chemically glycosylated with lactose. Circular dichroism (CD) spectra showed that chemical glycosylation did neither change the tertiary structure of HRP nor the heme environment. The highest sensitivity of the biosensor to hydroquinone was obtained for the biosensor with HRP-lactose (414 nA μM−1) compared to 378 nA μM−1 for the one employing non-modified HRP. The chemically glycosylated form of the enzyme catalyzed the reduction of hydroquinone more rapidly than the native form of the enzyme. The sensor employing lactose-modified HRP also had a lower limit of detection (74 μM) than the HRP biosensor (83 μM). However, most importantly, chemically glycosylation improved the long-term stability of the biosensor, which retained 60% of its activity over a four-month storage period compared to only 10% for HRP. These results highlight improvements by an innovative stabilization method when compared to previously reported enzyme-based biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号