首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of defects in carbon nanotubes under irradiation with argon ions is investigated. The π plasmons generated in single-walled and multiwalled carbon nanotubes are examined using electron energy-loss spectroscopy. In the course of experiments, the supramolecular structure of nanotubes is stepwise modified by an argon ion beam (the maximum irradiation dose is 360 μC/cm2). The content of argon ions implanted into a nanotube structure is controlled using Auger electron spectroscopy. The effect of ion irradiation on the π-plasmon energy Eπ and on the half-width at half-maximum δE of the π-plasmon spectrum is determined experimentally. An expression relating the above quantities and the concentration of implanted argon is derived. It is shown that the formation of defects under ion irradiation is a discontinuous process occurring in a stepwise manner. A qualitative phenomenological interpretation is proposed for the experimentally revealed decrease in the π-plasmon energy Eπ and for its attendant broadening of the π-plasmon spectrum. The assumption is made that the microscopic mechanism of the observed phenomena is associated with the narrowing of the energy π subbands in the electric field of charged defects generated by ions.  相似文献   

2.
Metal-organic chemical vapor deposition (MOCVD) grown n-type Gallium nitride (GaN) has been irradiated with 100 MeV Ni9+ ions at room temperature. Atomic force microscopy (AFM) images show the nano-clusters' formation upon irradiation and the irradiated GaN surface roughness increases with the increasing ion fluences. High-resolution X-ray diffraction (HR-XRD) analysis reveals the formation of Ga2O3 due to the interface mixing of GaN/Al2O3 upon irradiation. FWHM values of GaN (0 0 0 2) increases due to the lattice disorder. Photoluminescence studies show reduced band edge emission and yellow luminescence (YL) intensity with the increasing ion fluences. Change in the band gap energy between 3.38 and 3.04 eV was measured by UV-visible optical absorption spectrum on increasing the ion fluences.  相似文献   

3.
Transparent conductive GZO films were deposited on polycarbonate substrates by electron beam assisted radio frequency (RF) magnetron sputtering and then the influence of electron irradiation on the structural, optical and electrical properties of GZO films was investigated by using X-ray diffractometry, UV-vis spectrophotometry, four point probes, atomic force microscopy and UV photoelectron spectroscopy. Sputtering power was kept constant at 3 W/cm2 during deposition, while electron irradiation energy varied from 450 to 900 eV.Electron irradiated GZO films show larger grain sizes than those of films prepared without electron irradiation, and films irradiated at 900 eV show higher optical transmittance in the visible wavelength region and lower sheet resistance (120 Ω/□) than other films. The work-function is also increased with electron irradiation energy. The highest work-function of 4.4 eV was observed in films that were electron irradiated at 900 eV.  相似文献   

4.
We demonstrate that the quality of the as-grown single-walled carbon nanotubes (SWCNTs) can be effectively improved by the addition of the B ingredient in the Fe/MgO catalyst. The as-grown SWCNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The SWCNTs prepared by the pure Fe/MgO catalyst have relatively low graphite crystallinity and are coated by much amorphous carbon. The intensity ratio of the D- and G-bands (ID/IG) in Raman spectra is relatively high (0.098 for laser 532 nm and 0.075 for laser 785 nm). The SWCNTs grown from the Fe/MgO catalyst doped with 0.1 part of B have more regular graphite structure with little amorphous carbon. The ID/IG values reduced remarkably (0.041 for laser 532 nm and 0.040 for laser 785 nm). The effect would be attributed to the inhibitory action of the doped B on the formation of radical hydrocarbon species for the formation of SWCNTs.  相似文献   

5.
The fluorination and hydrogenation reactions on (6, 6) and (10, 0) single-walled carbon nanotubes (SWCNTs) have been examined via computing the reaction energy for the chemisorption. The examined nanotubes have comparable lengths and diameters, with or without Stone-Wales defects on the sidewall. The two fluorine or hydrogen atoms are anchored to the external walls of the SWCNTs. The computed chemisorption energies of these virtual reactions reveal that the fluorination and hydrogenation of the nanotubes are moderately sensitive to the nanotube chirality and the sidewall topology, and the (10, 0) SWCNT with Stone-Wales defect can be easily fluorinated and hydrogenated.   相似文献   

6.
Direct metal ion beam deposition (DMIBD) technique for Cu thin film metallization is characterized. With suitable operating conditions, secondary Cu ion yield, ion/atom arrival rate ratio, ion beam energy spreads were optimized at 15%, 0.3, and 10%, respectively.After optimization of DMIBD system, the effect of Cu ion beam energy on the resistivity, adhesion strength, and surface morphology of Cu thin film was investigated. TEM micrograph shows that the film prepared at 75 eV was polycrystalline, while the film prepared at 0 eV was vertical columnar structure.As ion beam energy is increased from 25 to 75 eV, the resistivity is decreased from 6.21 to 2.09 μΩ cm, while the critical load to cause adhesion failure was increased to about 13 N at 200 eV, which is four-times higher that that of 25 eV.  相似文献   

7.
Suspended single-walled carbon nanotubes (SWCNTs) between SiO2 pillars via a direct lithographic route using a simple mixture of catalyst precursor [Co(III) acetylacetonate, Co(acac)3] and conventional electron beam resist (ma-N2403) were fabricated. The catalytic electron beam resist (Cat-ER) layer plays dual roles as a catalyst and a resist layer for the growth and alignment of CNTs, respectively. The structure of the grown nanotube was characterized by Raman spectroscopy (633 nm laser excitation). Nanotubes grown from Cat-ER with Co(acac)3 show the typical Raman spectra of SWCNTs which are characterized by the strong tangential bands near to 1590 cm−1 and radial breathing modes (RBMs) in the low frequency region (<300 cm−1). The calculated diameter of the probed nanotubes individually corresponds to the range 0.86-1.77 nm.  相似文献   

8.
We have studied the effects of controlled ion bombardment on the electronic structure of the Si(0 0 1) surface. The surface was exposed to various doses of Ar+ ions accelerated towards the surface at 500 eV. X-ray photoelectron spectroscopy (XPS) spectra of the irradiated H-terminated Si(0 0 1) surface reveal the appearance of peaks that are associated with the presence of cleaved Si bonds. Ultraviolet photoelectron spectroscopy (UPS) spectra of the irradiated Si(0 0 1)2 × 1 surface show that the dimer dangling-bond surface state decays monotonically with increasing dose. These results, coupled with previous scanning tunneling microscopy (STM) studies, indicate that the breaking of dimers, and possibly the creation of adatom-like defects, during ion irradiation are responsible for the changes in the electronic structure of the valence band for this surface.  相似文献   

9.
The dry sliding tribological behavior of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam (HIPIB) at energy density of 3.4 J/cm2 with 10 shots is investigated by dry sliding wear tests in order to explore the effect of HIPIB irradiation on tribological property of magnesium alloy. Surface morphologies, composition and structure of the irradiated AZ31 magnesium alloys are examined by electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results indicated that HIPIB irradiation led to the increase in surface microhardness and the reduction in friction coefficient and wear rate. Wear rate for both the original and the irradiated samples increased with increasing sliding load from 0.1 to 0.5 N. The transition from severe metallic wear to mild oxidative wear induced by HIPIB irradiation was observed by a combined analysis in surface morphology and chemical composition of wear tracks, mechanically mixed materials and wear debris, which is mainly attributed to the significant increase in microhardness resulting from grain refinement on the irradiated surface. In addition, defects induced by HIPIB irradiation promoted the diffusion of oxygen during sliding wear and therefore led to the formation of compact mixed materials and protective films on the wear tracks surface, which also contributes to the transition in wear mechanism of AZ31 magnesium alloy induced by HIPIB irradiation.  相似文献   

10.
Polyimide (PMDA-ODA) surface was irradiated by low energy reactive atomic beam with energy 160-180 eV to enhance the adhesion with metal Cu film. O2+ and N2+ ions were irradiated at the fluence from 5 × 1015 to 1 × 1018 cm−2. Wetting angle 78° of distilled deionized (DI) water for bare PI was greatly reduced down to 2-4° after critical ion flounce, and the surface energy was increased from 37 to 81.2 erg/cm. From the analysis of O 1s core-level XPS spectra, such improvement seemed to result from the increment of hydrophilic carbonyl oxygen content on modified PI surface. To see more carefully correlation of the peel strength with interfacial reaction between Cu and PI, flexible copper clad laminate with Cu (9 μm)/Cu (200 nm) on modified PI substrate (25 μm) was fabricated by successive sputtering and electroplating. Firstly, peel strength was measured by using t-test and it was largely increased from 0.2 to 0.5 kgf/cm for Ar+ only irradiated PI to 0.72-0.8 kgf/cm for O2+ or N2O+ irradiated PI. Chemical reaction at the interface was reasoned by analyzing C 1s, O 1s, N 1s, and Cu 2p core-level X-ray photoelectron spectroscopy over the as-cleaved Cu-side and PI side surface through depth profiling. From the C 1s spectra of cleaved Cu-side, by the electron transfer from Cu to carbonyl oxygen, carbonyl carbon atom became less positive and as a result shifted to lower binding energy not reaching the binding energy of C2 and C3. The binding energy shift of the peak C4 as small as 1.7 eV indicates that carbonyl oxygen atoms were not completely broken. From the analysis of the O 1s spectra, it was found that new peak at 530.5 eV (O3) was occurred and the increased area of the peak O3 was almost the same with reduced area of the peak carbonyl oxygen peak O1. Since there was no change in the relative intensity of ether oxygen (O2) to carbonyl oxygen (O1), and thus O3 was believed to result from Cu oxide formation via a local bonding of Cu with carbonyl oxygen atoms. Moreover, from X-ray induced Auger emission spectra Cu LMM which was very sensitive to chemical bonding, Cu oxide or CuOC complex formation instead of CuNO complex was clearly identified by the observation of the peak at 570 eV at higher 2 eV than that of metal Cu. In conclusion, when Cu atoms were sputtered on modified PI by low energy ion beam irradiation, it can be suggested that two Cu atoms locally reacted with carbonyl oxygen in PMDA units and formed Cu+OC complex linkage without being broken from carbon atoms and thus the chemically bound Cu was in the form of Cu2O.  相似文献   

11.
The microstructure and morphology of graphite irradiated by high-intensity pulsed ion beams (HIPIB) has been studied by varying the ion current density as 200, 350 and 1500 A/cm2 with one to five shots. Phase transformation from graphite to diamond-like carbon (DLC) on the HIPIB-irradiated graphite was confirmed by Raman spectroscopy where a typical broadened asymmetric peak appeared in the wavenumber range of 1100-1700 cm−1. Formation of DLC on the irradiated graphite strongly depended on the HIPIB parameters and preferably took place at the medium ion current density of 350 A/cm2 up to five shots. Numerical simulation of ablation process was performed to explore the transformation mechanism of DLC from graphite irradiated by HIPIB. The calculation showed that the temperature profile in irradiated graphite at 350 A/cm2 is almost identical to that at 200 A/cm2, showing a deeper heat-affected zone in comparison with that of 1500 A/cm2. Moreover, the ablation depth per shot is around 0.8 μm at 350 A/cm2, higher than that of 0.4 μm at 200 A/cm2 and much lower than that of 8.4 μm at 1500 A/cm2, respectively. The experimental and numerical results indicate that a proper temperature and pressure repetitively created in the top layer of ablated graphite during HIPIB irradiation facilitates the phase transformation.  相似文献   

12.
Radial breathing modes (RBMs) in resonance Raman spectra from single-walled carbon nanotubes (SWCNTs) on a SiO2/Si (0 0 1) substrate are studied between 25 and 720 °C. A change in the relative intensity of each RBM peak with temperature is observed, which originates from the temperature dependence of the resonance condition of nanotubes. For 25 °C, each RBM peak is reasonably assigned on the basis of data in the literature [J. Maultzsch, H. Telg, S. Reich, F. Hennrich, C. Thomsen, Phys. Rev. B 72 (2005) 205438]. By taking into account the temperature-dependent behavior of the relative intensity of the RBM peaks, each RBM peak is successfully assigned even for 720 °C. It is found that most of the observed RBM peaks for a laser excitation energy of Eexc = 1.96 eV are from chiral SWCNTs. These results make it possible to discuss further details of the chirality-dependent growth behavior observed for in situ Raman spectroscopy.  相似文献   

13.
Two luminescence bands in the UV range were detected in crystalline α-quartz under electron beam excitation (6 kV, 3-5 μA). One band is situated at 5 eV and could be observed in pure samples. Its intensity increases with cooling below 100 K and undergoes saturation below 40 K alongside a slow growth with the time of irradiation at 9 K. The decay curve of the band at 5 eV contains two components, a fast (<10 ns) and a slow one in the range of 200 μs. The photoluminescence band at 5 eV with a similar temperature dependence was found in previously neutron-irradiated crystalline α-quartz. Therefore, the band at 5 eV was attributed to host material defects in both irradiation cases. The creation mechanism of such defects by electrons, the energy of which is lower than the threshold for a knock-out mechanism of defect creation, is discussed. Another band at 6 eV, containing subbands in different samples, appears in the samples containing aluminum, lithium and sodium ions. This luminescence is ascribed to a tunnel radiative transition in an association of (alkali atom)0-[AlO4]+ that is formed after the trapping of an electron and a hole by Li+ (or Na+) and AlO4.  相似文献   

14.
The chemical state of sulfur and surface structure on low-energy S+ ion-treated p-InP(1 0 0) surface have been investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). S+ ion energy over the range of 10-100 eV was used to study the effect of ion energy on surface damage and the process of sulfur passivation on p-InP(1 0 0) by S+ ion beam bombardment. It was found that sulfur species formed on the S+ ion-treated surface. The S+ ions with energy above 50 eV were more effective in formation of In-S species, which assisted the InP surface in reconstruction into an ordered (1 × 1) structure upon annealing. After taking into account physical damage due to the process of ion bombardment, we found that 50 eV was the optimal ion energy to form In-S species in the sulfur passivation of p-InP(1 0 0). The subsequent annealing process removed donor states that were introduced during the ion bombardment of p-InP(1 0 0). Results of theoretical simulations by Transport of Ions in Materials (TRIM) are in accordance with those of experiments.  相似文献   

15.
Metal-semiconductor diode of Au/n-GaAs is studied under the irradiation of swift heavy ion (SHI) beam (80 MeV 16O6+), using in situ current-voltage characterization technique. The diode parameters like ideality factor, barrier height, and leakage current are observed to vary with irradiation fluence. Significantly, the diode performance improves at a high fluence of 2 × 1013 ions cm−2 with a large decrease of reverse leakage current in comparison to the original as deposited sample. The Schottky barrier height (SBH) also increases with fluence. At a high irradiation fluence of 5 × 1013 ions cm−2 the SBH (0.62 ± 0.01 eV) is much larger than that of the as deposited sample (0.55 ± 0.01 eV). The diode parameters remain stable over a large range of irradiation up to fluence of 8 × 1013 ions cm−2. A prominent annealing effect of the swift ion beam owing to moderate electronic excitation and high ratio of electronic energy loss to the nuclear loss is found to be responsible for the improvement in diode characteristics.  相似文献   

16.
High purity n-type silicon single crystal with resistivity in the order of 4000 Ω cm has been irradiated with high-energy oxygen ions at room temperature up to a fluence of 5E15 ions/cm2. The energy of the beam was varied from 3 to 140 MeV using a rotating degrader to achieve a depthwise near-uniform implantation profile. Radiation induced defects and their dynamics have been studied using positron annihilation spectroscopy along with isochronal annealing up to 700 °C in steps of 50 °C for 30 min. After annealing the sample at 200 °C for 30 min, formation of silicon tetravacancies has been noticed. The formation of the tetravacancies was found to be due to agglomeration of divacancies present in the irradiated sample. An experimentally obtained positron lifetime value of 338±10 ps has been reported for silicon tetravacancies, which has a very close agreement with the value obtained from recent theoretical calculations. The tetravacancies were found to dissociate into trivacancy clusters upon further annealing. The trivacancies thus obtained were observed to agglomerate beyond 400 °C to form larger defect clusters. Finally, all the defects were found to anneal out after annealing the sample at 650 °C.  相似文献   

17.
We investigated luminescence decay kinetics in single-walled carbon nanotubes in large bundles excited by femtosecond pulses. The time constant of luminescence decay becomes longer with decrease in photon energy: 40 fs at 1.2 eV and 380 fs at 0.6 eV. This behavior is explained by exciton energy transfer from an excited to neighboring tubes.  相似文献   

18.
范冰冰  王利娜  温合静  关莉  王海龙  张锐 《物理学报》2011,60(1):12101-012101
本文采用第一性原理的密度泛函理论,主要以(6,6)Armchair型,(11,0)Zigzag型单壁碳纳米管为研究对象,研究了水分子链在碳纳米管内部吸附的稳定结构,以及结合能随其结构的变化.结果表明:当水分子链受限于碳纳米管内部时,引起碳纳米管直径收缩,这主要是由于水分子链与碳纳米管之间的氢键作用以及范德华弱相互作用所引起的.随着碳纳米管半径的增加,两种单体之间的结合能逐渐减小,但当碳纳米管半径增加至6.78时,其结合能又有所增加,这是由于在优化过程中,水分子链单体之间的氢键作用大于水分子链与碳纳米管之 关键词: 水分子链/单壁碳纳米管 密度泛函理论 结构稳定性  相似文献   

19.
The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of ∼1×10−8 mbar. The values of the threshold field, required to draw an emission current density of ∼1 μA/cm2, are found to be ∼0.52, 1.9, 1.3 and 0.8 V/μm for untreated, irradiated with fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.  相似文献   

20.
In the present paper thermoluminescence properties of argon ions irradiated barium strontium mixed sulphate phosphor are reported. The Ba0.12Sr0.88SO4 phosphor was prepared by chemical co-precipitation method. The X-ray diffraction study of prepared sample suggests orthorhombic structure with average grain size of 37 nm. The samples were irradiated with 1.2 MeV Argon ions at fluences varying between 1011-1015 ions/cm2. The argon ions penetrate to the depth of 1.89 μm and lose their energy mainly via electronic stopping. Due to ion irradiation, a large number of defects in the sample are formed. Thermoluminescence (TL) glow curves were recorded for each of the ion fluence. These curves exhibit one broad peak with maximum intensity at 498 K composed of three overlapping peaks. This indicates that different sets of traps are being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The peaks were observed due to formation of trap levels by ion irradiation and subsequently activation of traps on thermal stimulation. The TL response of the nanophosphor is linear in the dose range 59 kGy-590 MGy. Kinetic parameters associated with the prominent peaks were calculated using glow curve deconvolution (GCD) and verified by different glow curve shape and sample heating rate methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号