首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Ti solids targets in liquid environments (H2O, C2H5OH, C2H4Cl2, etc.). X-ray diffractometry (XRD), UV-Vis optical transmission spectrometry, and high-resolution transmission electron microscopy (HRTEM) characterise the nanoparticles. The morphology of nanoparticles is studied as a function of both laser fluence and nature of the liquid. The evidence of an intermediate phase of Au-Ag alloy is presented under exposure of a mixture of individual nanoparticles to laser radiation. Self-influence of the beam of a femtosecond laser is discussed under the ablation of the Ag target in liquids under Ti:sapphire laser. The factors are discussed that determine the distribution function of particle size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated. PACS 42.62.-b; 61.46.+w; 78.66.-w  相似文献   

2.
Pulsed laser ablation (PLA) of ceramic target in liquid phase was successfully employed to prepare calcium tungstate (CaWO4) and calcium molybdate (CaMoO4) colloidal nanoparticles. The crystalline phase, particle morphology and optical property of the colloidal nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The produced stable colloidal suspensions consisted of the well-dispersed nanoparticles showing a spherical shape. The mechanism for the laser ablation and nanoparticle forming was discussed under consideration of photo-ablation process. Nanoparticle tracking analysis using optical microscope combined with image analysis was proposed to determine the size distribution function of the prepared colloidal nanoparticles. The mean size of the CaWO4 and CaMoO4 colloidal nanoparticles were 16 and 29 nm, with a standard deviations of 2.1 and 5.2 nm, respectively.  相似文献   

3.
We have observed several kinds of hydrocarbon cations after the nanosecond and the femtosecond laser ablation (nsLA and fsLA) of solid C60. The observation indicates that the carbon fragments produced just after laser ablation of the C60 molecule react with the hydrogen atoms and ions coexisting in the ablation plume. In the case of fsLA, clear dependence of the product hydrocarbon species on the ablation laser power has been observed although the dependence is not clearly observed in nsLA. The production of CnH5+ (n = 8, 10, and 12) is only observed in fsLA suggesting the unique nature of the transient carbon fragments produced by fsLA.  相似文献   

4.
Two types of core-shell nanoparticles have been prepared by laser pyrolysis using Fe(CO)5 and C2H2 or [(CH3)3Si]2O as precursors and C2H4 as sensitizer. The first type (about 4 nm diameter) - produced by the decomposition of Fe(CO)5 in the presence of C2H4 and C2H2 - consists of Fe cores protected by graphenic layers. The second type (mean particle size of about 14 nm) consists also of Fe cores, yet covered by few nm thick γ-Fe2O3/porous polycarbosiloxane shells resulted from the [(CH3)3Si]2O decomposition and superficial oxidation after air exposure. The hysteresis loops suggest a room temperature superparamagnetic behavior of the Fe-C nanopowder and a weak ferromagnetic one for larger particles in the Fe-Fe2O3-polymer sample. Both types of nanoparticles were finally used as a catalyst for the carbon nanotube growth by seeding Si(100) substrates via drop-casting method. CNTs were grown by Hot-Filament Direct.Current PE CVD technique from C2H2 and H2 at 980 K. It is suggested that the increased density and orientation degree observed for the multiwall nanotubes grown from Fe-Fe2O3-polymer nanoparticles could be due to their magnetic behavior and surface composition.  相似文献   

5.
The synthesis by pulsed laser deposition technique of zinc oxide thin films suitable for gas sensing applications is herein reported. The ZnO targets were irradiated by an UV KrF* (λ = 248 nm, τFWHM ∼7 ns) excimer laser source, operated at 2.8 J/cm2 incident fluence value, whilst the substrates consisted of SiO2(0 0 1) wafers heated at 150 °C during the thin films growth process. The experiments were performed in an oxygen dynamic pressure of 10 Pa. Structural and optical properties of the thin films were investigated. The obtained results have demonstrated that the films are c-axis oriented. Their average transmission in the visible-infrared spectral region was found to be about 85%. The equivalent refractive indexes and extinction coefficients were very close to those of the tabulated reference values. Doping with 0.5% Au and coating with 100 pulses of Au clusters caused but a very slight decrease (with a few percent) of both transmission and refractive index values. The coatings with the most appropriate optical properties as waveguides have been selected and their behavior was tested for butane sensing.  相似文献   

6.
In X-ray photoelectron spectroscopy (XPS) of Au nanoparticles, the width of 5d valence band changes with Au particle size. This enables us to estimate the size of Au nanoparticles by using XPS. In this work, the 5d-band width has been measured for Au nanoparticles formed by ion implantation into SiO2. The 5d-band width is found to be correlated strongly with the Au concentration. As the Au concentration increases, the 5d-band width becomes larger, indicating that the Au nanoparticles with the larger size tend to be formed in the vicinity of the projected range of Au ions. This correlation agrees very well with the results from transmission electron microscopy.  相似文献   

7.
The effects of H2 plasma pretreatment on the growth of vertically aligned carbon nanotubes (CNTs) by varying the flow rate of the precursor gas mixture during microwave plasma chemical vapor deposition (MPCVD) have been investigated in this study. Gas mixture of H2 and CH4 with a ratio of 9:1 was used as the precursor for synthesizing CNTs on Ni-coated TiN/Si(1 0 0) substrates. The structure and composition of Ni catalyst nanoparticles were investigated by using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (XTEM). Results indicated that, by manipulating the morphology and density of the Ni catalyst nanoparticles via changing the flow rate of the precursor gas mixture, the vertically aligned CNTs could be effectively controlled. The Raman results also indicated that the intensity ratio of the G and D bands (ID/IG) is decreased with increasing gas flow rate. TEM results suggest H2 plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles and, thus, is playing a crucial role in modifying the obtained CNTs structures.  相似文献   

8.
Silicon carbonitride (SiCN) thin films were deposited on n-type Si (1 0 0) and glass substrates by reactive magnetron sputtering of a polycrystalline silicon target in a mixture of argon (Ar), nitrogen (N2) and acetylene (C2H2). The properties of the films were characterized by scanning electron microscope with an energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and ultraviolet-visible spectrophotometer. The results show that the C2H2 flow rate plays an important role in the composition, structural and optical properties of the films. The films have an even surface and an amorphous structure. With the increase of C2H2 flow rate, the C content gradually increases while Si and N contents have a tendency to decrease in the SiCN films, and the optical band gap of the films monotonically decreases. The main bonds are Si-O, N-Hn, C-C, C-N, Si-N, Si-C and Si-H in the SiCN films while the chemical bonding network of Si-O, C-C, C-O, C-N, N-Si and CN is formed in the surface of the SiCN films.  相似文献   

9.
Composite Au/TiO2 nanoparticles were synthesized by laser ablation of gold plate in TiO2 sol. The nanoparticles were characterized by UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction, and atomic force microscopy. The peak of surface plasmon is at 550 nm with a red shift of 30 nm compared with that of Au nanoparticles in water. Monolayers of composite Au/TiO2 nanoparticles were obtained by dip-coating technique. The XRD pattern of Au/TiO2 powders resembles a mixture of anatase TiO2 and gold.  相似文献   

10.
Iron oxide nanoparticles were synthesized by the thermal decomposition of Fe(acac)3 and Fe(CO)5. Three different homogeneous procedures were used for the controlled synthesis of Fe3O4, γ-Fe2O3 and Fe3O4/γ-Fe2O3 mixture nanocrystals. A combination of characterization techniques was used in order to distinguish these oxides. The controllable size, the narrow distribution and the rhombic self-assembly of the nanoparticles were revealed by the high-resolution transmission electron microscopy images and the X-ray powder diffraction results. For the quantitative analysis of the samples manganometry was used. Preliminary magnetic measurements indicated the size and composition dependence of saturation magnetization, a superparamagnetic behavior of the samples and some ferromagnetic features.  相似文献   

11.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

12.
Fe3O4 nanoparticles were hydrothermally synthesized under continuous microwave irradiation from FeCl3·6H2O and FeSO4·7H2O aqueous solutions, using NH4OH as precipitating reagent and N2H4·H2O as oxidation-resistant reagent. The results of X-ray powder diffraction (XRD), FT–IR spectroscopy and scanning electron microscopy (SEM) measurements showed that the synthesized magnetite (Fe3O4) nanoparticles had an average diameter of 10 nm. The magnetic properties of the Fe3O4 nanoparticles were measured using a vibrating sample magnetometer (VSM), indicating that the nanoparticles possessed high saturation magnetization at room temperature. The Fe3O4 nanoparticles were used to prepare magnetic fluids (MFs) based on water, and the properties of the MFs were characterized by a Gouy magnetic balance, a capillary rheometer and a rotating rheometer, respectively.  相似文献   

13.
The frequency conversion of laser radiation in cluster media is studied by the method of laser ablation of surfaces containing different nanoparticles (Cr2O3, In2O3, Ag, Sn, Au, and Cu). Using plasma that contains In2O3 nanoparticles as an example, it is shown that the resonant amplification of certain harmonics in the plateau-like distribution of harmonics, which is characteristic of the ablation of certain solid targets, is considerably modified in the case of targets that contain cluster formations. An increase in the conversion efficiency to harmonics in nanoparticle-containing media is discussed. In order to determine optimal characteristics of laser plasma with nanoparticles, their morphology is studied before and after laser ablation.  相似文献   

14.
In this work, we present results of the synthesis and characterization of iron and iron oxide nanoparticles aggregated in filamentary, spider-web-like structures. The particles were produced in a flow reactor by CO2 laser pyrolysis of gaseous mixtures of iron pentacarbonyl and ethylene. Low- and high-resolution electron microscopy reveals chain-like structures of particles, most of them being composed of an α-iron core and an iron oxide shell, identified as magnetite and, to a lesser extent, hematite. These results are in good agreement with a M?ssbauer analysis carried out for the same samples. The role of the reaction temperature on the synthesis of filamentary iron nanostructures by infrared laser pyrolysis of Fe(CO)5/C2H4 mixtures is discussed. Received: 31 May 2000 / Accepted: 6 June 2000 / Published online: 2 August 2000  相似文献   

15.
A YAG laser operating at the second harmonic wavelength (532 nm, 10 Hz, 8 ns and 40 mJ) was used to elaborate bimetallic nanoparticles by laser ablation of Ni75Pd25 and Au75Ag25 targets in water. TEM–EDX, UV–Vis spectroscopy and PIXE measurements were performed to obtain information on their mean sizes, size distributions and chemical composition as a function of the time of laser ablation. The surface of the laser impacted regions of the targets were characterized by RBS in order to check their composition after the laser ablation. The so-obtained bimetallic nanoparticles always show a homogeneous composition. However, while the composition of Au–Ag nanoparticles was found to be very similar to the one of the alloy target, the composition of the Ni–Pd nanoparticles can be different from the nominal composition of the alloy target. Segregation phenomena can be invoked to explain the difference between the Ni–Pd nanoparticles and the Au–Ag nanoparticles compositions obtained in the same conditions. However, an influence of chemical reactions occurring in the high pressure plasma created locally at liquid–solid interface (called ‘reactive quenching’) cannot be completely ruled out.  相似文献   

16.
17.
Nb2O5 nanorods have been prepared using water/ethanol media. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption and photoluminescence spectroscopy. The as-prepared Nb2O5 nanorods appeared to be single pseudohexagonal (TT-Nb2O5) phase. From the photoluminescence spectrum, two emission bands at 407 and 496 nm, respectively, were observed. The origin of the luminescence was discussed in detail.  相似文献   

18.
Laser ablation of a silver (Ag) and/or gold (Au) target was performed in liquid ammonia (l-NH3) at 233 K using nanosecond laser pulses of 1064, 532 and 355 nm wavelengths. An “in situ” monitoring of the ablation process by UV/vis/NIR spectroscopy has shown the evolution of the surface plasmon extinction band of silver or gold nanoparticles and thus confirmed their formation. While sols of Au nanoparticles in l-NH3 are quite stable in air, those of Ag nanoparticles undergo oxidation to Ag(I) complexes with NH3 ligands. On the other hand, formation of solvated electrons, namely of the (e)NH3 solvates, has not been unequivocally confirmed under the conditions of our laser ablation/nanoparticle fragmentation experiment, since only very weak vis/NIR spectral features of these solvates were observed with a low reproducibility. Reference experiments have shown that the well-known chemical production of these solvates is hindered by the presence of Ag and Au plates. Ag and Au targets can thus possibly act as electron scavengers in our ablation experiments.  相似文献   

19.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

20.
The natural cuprate botallackite, Cu2Cl(OH)3, is found to be a new antiferromagnet with Magnetic susceptibility properties under strong field show non-linear M-H properties indicating metamagnetism. The TN and the super-exchange coupling are discussed and compared with its polymorph atacamite and other copper oxides on the basis of their structural parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号