首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric–metal–metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core–shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core–shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core–shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core–shell or Al@Al2O3@AgAu alloy. The formation of core–shell and alloy nanostructure was confirmed by UV–visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400–520 nm with increasing ablation time suggesting formation of Ag–Au alloy in the presence of alumina particles in the solution.  相似文献   

2.
Pd/Ag bimetallic nanoparticles have been synthesized successfully by reducing PdCl2 and AgNO3 mixture in ethylene glycol solution using the solvothermal method. The prepared samples have been characterized by UV–vis, XRD, TEM, HRTEM, EDS, and XPS, respectively. Moreover, the bimetallic particles possess alloy and core-shell structure from the HRTEM images. Here, the lattice fringe spacing of Pd/Ag bimetallic nanoparticles corresponds to its (111) plane, which is between that of the Pd and Ag nanoparticles prepared under the same conditions. Furthermore, the possible formation mechanism and factors influencing the formation of Pd/Ag bimetallic nanoparticles, such as reaction temperature and time, have also been investigated.  相似文献   

3.
A review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Ti solids targets in liquid environments (H2O, C2H5OH, C2H4Cl2, etc.). X-ray diffractometry (XRD), UV-Vis optical transmission spectrometry, and high-resolution transmission electron microscopy (HRTEM) characterise the nanoparticles. The morphology of nanoparticles is studied as a function of both laser fluence and nature of the liquid. The evidence of an intermediate phase of Au-Ag alloy is presented under exposure of a mixture of individual nanoparticles to laser radiation. Self-influence of the beam of a femtosecond laser is discussed under the ablation of the Ag target in liquids under Ti:sapphire laser. The factors are discussed that determine the distribution function of particle size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated. PACS 42.62.-b; 61.46.+w; 78.66.-w  相似文献   

4.
Laser ablation of a silver (Ag) and/or gold (Au) target was performed in liquid ammonia (l-NH3) at 233 K using nanosecond laser pulses of 1064, 532 and 355 nm wavelengths. An “in situ” monitoring of the ablation process by UV/vis/NIR spectroscopy has shown the evolution of the surface plasmon extinction band of silver or gold nanoparticles and thus confirmed their formation. While sols of Au nanoparticles in l-NH3 are quite stable in air, those of Ag nanoparticles undergo oxidation to Ag(I) complexes with NH3 ligands. On the other hand, formation of solvated electrons, namely of the (e)NH3 solvates, has not been unequivocally confirmed under the conditions of our laser ablation/nanoparticle fragmentation experiment, since only very weak vis/NIR spectral features of these solvates were observed with a low reproducibility. Reference experiments have shown that the well-known chemical production of these solvates is hindered by the presence of Ag and Au plates. Ag and Au targets can thus possibly act as electron scavengers in our ablation experiments.  相似文献   

5.
A series of PdxNi100−x nanoparticles were prepared by the co-precipitation method and analyzed using a temperature-programmed surface reaction (TPSR) of their methanation reactions. ESCA measurement suggested that the as-prepared Pd-Ni alloys had Pd-core/Ni-shell structure. Surface Pd segregation occurred during H2 reduction and resulted in a surface composition close to the nominal value. The TPSR experiments were performed by pre-adsorption of CO with H2 to form methane. The peak temperature of methanation increased as Pd content increased, indicating that a methanation reaction is favored on Ni and Ni-rich alloy nanoparticles. For physical mixtures of Pd and Ni nanoparticles, methanation behaviors is similar to those of alloy nanoparticles; but the methanation temperatures of physical mixtures are always higher than those of alloy nanoparticles. This may be due to the formation of a Pd-enriched alloy surface layer during reduction in H2 at 400 °C, or because the CO molecules adsorbed on the Pd sites spill over onto the Ni sites for methanation. Using TPSR technique and measuring methanation temperature, the top-most surface of such bimetallic nanoparticles can be probed.  相似文献   

6.
A facile strategy has been developed for the preparation of bimetallic gold–silver (Au–Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)–silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI–Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV–vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV–vis characteristic absorbances of {PEI–Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core–shell structures in the TEM images confirm the formation of bimetallic Au–Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20–25 nm. The resulting {PEI–Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI–Ag/Au}n films are more attractive compared to {PEI–Ag/PSS}n and {PEI/Au}n films.  相似文献   

7.
Many late transition binary alloy nanoparticles (NPs) have been fabricated through a wide variety of techniques. Various steps are involved in the fabrication of such NPs. Here, we used a simple and green route to fabricate solid-solution Rh–Pd and Rh–Pt bimetallic alloy NPs through femtosecond laser irradiation in a solution without any chemicals like reducing agents. X-ray diffraction (XRD) peaks of NPs obtained in the solutions with different ratios of Rh–Pd and Rh–Pt ions monotonically varied from the position of pure Rh to those of Pd and to Pt which respectively indicated that these NPs were alloy. Composition of fabricated NPs was fully tuned over the entire range of Rh1?x –Pd x , and Rh1?x –Pt x with varying the mixing ratio of metal ions in the solution. Studies of Rh–Pd and Rh–Pt solid-solution system suggest that the alloy formation occurs through the nucleation of Rh and then followed by the diffusion of Rh, Pd and Rh, Pt to form a homogeneous alloy. The variety of average size of the alloy NPs for different compositions could be attributed to different reduction rate and surface energies of metal ions. Our result implies that femtosecond laser irradiation in aqueous solution is one of the potential methodologies to form multimetallic solid-solution alloy NPs with fully tunable composition.  相似文献   

8.
The frequency conversion of laser radiation in cluster media is studied by the method of laser ablation of surfaces containing different nanoparticles (Cr2O3, In2O3, Ag, Sn, Au, and Cu). Using plasma that contains In2O3 nanoparticles as an example, it is shown that the resonant amplification of certain harmonics in the plateau-like distribution of harmonics, which is characteristic of the ablation of certain solid targets, is considerably modified in the case of targets that contain cluster formations. An increase in the conversion efficiency to harmonics in nanoparticle-containing media is discussed. In order to determine optimal characteristics of laser plasma with nanoparticles, their morphology is studied before and after laser ablation.  相似文献   

9.
The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H2O, C2H5OH, C2H4Cl2, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.  相似文献   

10.
A comprehensive knowledge of composition‐activity property relationship of nanoparticulate materials is highly desirable for applications in various catalysis reactions. We have addressed a facile green aqueous approach for preparation of Au, Ag monometallic, Au/Ag alloy as well as core‐shell bimetallic nanoparticles. The phytochemicals present in lemon grass leaves extract were employed both as natural reducing and capping agents at room temperature. X‐ray diffraction pattern, UV‐Vis spectroscopy, and energy dispersive X‐ray studies confirmed the formation of bimetallic system. The ensuing Au core/Ag shell and Au/Ag alloy bimetallic nanoparticles were crystalline and spherical in nature with identical average diameter of ~ 18 nm as measured via transmission electron microscopy. The bimetallic systems incredibly display higher catalytic potential than their monometallic counterparts which were vividly reckoned on structural effect, lattice compression, and synergistic electronic effect.  相似文献   

11.
Pulsed laser ablation in liquid media (PLALM) is a prominent technique for the controlled fabrication of nanomaterials via rapid reactive quenching of ablated species at the interface between the plasma and liquid. Results on nanoparticles and nanocrystals formed by PLALM of silver (Ag) and antimony (Sb) solid targets in different liquid environments (Sodium Dodecyl Sulfate, distilled water) are presented. These experiments were done by irradiating solid targets of Ag and Sb with a nanosecond pulsed Nd:YAG laser output of wavelength 532 nm. Nanoparticles of silver and nanocrystals of antimony oxide (Sb2O3) obtained were characterized using UV-Vis spectrometry, Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Energy Dispersion Analysis (EDAX) and X-ray diffractometry (XRD). The morphology of nanomaterials formed is studied as a function of surfactant environment. The silver nanoparticles obtained were spherical of size in the order of 10–35 nm in solution of SDS having different concentrations. In case of the Sb target, ablation was performed in two different molarities of SDS solution and distilled water. Nanocrystals of Sb2O3 in powder form having cubic and orthorhombic phases were formed in SDS solution and as fibers of nanocrystals of cubic Sb2O3 in distilled water.  相似文献   

12.
Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.  相似文献   

13.
The laser vaporization controlled condensation (LVCC) technique coupled with a differential mobility analyzer (DMA) is used to synthesize size-selected alloy nanoparticles and nanoparticle catalyst systems. The formation of Au–Ag alloy nanoparticles is concluded from the observation of only one plasmon band. The maximum of the plasmon absorption is found to vary linearly with the gold mole fraction. For the Au–Pd system, the XRD data confirms the formation of the alloy nanoparticles with no evidence of any of the pure components. The Au/CeO2 nanoparticle catalyst prepared by the LVCC method is a promising catalyst for low temperature CO oxidation due to its high activity and stability.  相似文献   

14.
Laser ablation propulsion is a form of beam-powered propulsion in which a pulsed laser ablates a target material thus producing thrust. We report in this work the measurements of various parameters related to laser-induced micropropulsion in toluene diisocyanate-based polyurethane polymer, aluminum and Co–Ni ferrite. The targets were irradiated by a Q-switched pulsed Nd–YAG laser at 1064 nm (pulse duration 5 ns) under atmospheric conditions. A contact-free optical triangulation method was used to measure the laser ablation induced thrust in the samples. The measurements and calculations depict that Co–Ni ferrite is better in terms of critical propulsion parameters C m and I sp. It has been observed that the propulsion parameters depend on the energy per pulse of the incident laser beam.  相似文献   

15.
《Current Applied Physics》2015,15(8):857-863
Au–Ag bimetallic nanochains were prepared using pulsed laser ablation in liquid medium. Synthesis was performed by ablating silver target in a gold colloidal suspension. The plasmon characteristics of the nanostructures are found to be sensitive to ablation duration. AFM and TEM images indicate that almost all nanoparticles, both Au and Ag in the suspension participate in the growth process. An attempt was also made to realize plasmon hybridization by reducing the volume of the suspension by simple evaporation. The nanochains were tested for application as SERS substrates by using crystal violet as probe molecules.  相似文献   

16.
Novel synthesis of amine-stabilized Au–Ag alloy nanoparticles with controlled composition has been devised using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. The composition of Au–Ag alloy nanoparticles was readily controlled by varying the initial relative amount of HAuCl4 and AgNO3. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of Ag+ in the presence of Cl from the gold salt was avoided. On this basis, the relatively high concentrations of HAuCl4 and AgNO3 salts were used for the fabrication of Au–Ag alloy nanoparticles. The PEI thus plays triple roles in this study that include the co-reducing agents for HAuCl4 and AgNO3, the stabilizing agents for Au–Ag alloy nanoparticles, and even the dissolving agents for AgCl. As a novel material for use in catalysis, the Au–Ag alloy nanoparticles including pure Au and Ag samples were exploited as catalysts for the reduction of 4-nitrophenol in the presence of NaBH4. As the Au content was increased in the Au–Ag alloy nanoparticles, the rate constant of the reduction was exponentially increased from pure Ag to pure Au.  相似文献   

17.
Zhou-jun Wang  Qiang Fu  Zhen Wang  Xinhe Bao 《Surface science》2012,606(15-16):1313-1322
The nucleation and thermal stability of Au, Ni, and Au–Ni nanoclusters on 6H-SiC(0001) carbon nanomesh as well as the interaction between Au–Ni bimetallic clusters and reactive gases have been studied by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Both Au and Ni atoms grow as three-dimensional (3D) clusters. Annealing the Au/carbon nanomesh surface up to 1150 °C leads to complete desorption of the Au clusters, while interfacial reaction occurs between Ni clusters and the substrate surface when the Ni clusters are subjected to the same annealing process. The nucleation of Au–Ni clusters depends critically on the deposition sequence. Au atoms preferentially nucleate on the existing Ni clusters, leading to the formation of bimetallic clusters with Au enriched on the surface. If the deposition sequence is reversed, a part of Ni atoms nucleate between the Au clusters. The thermal stability of the Au–Ni clusters resembles that of the Ni/carbon nanomesh surface, irrespective of the deposition sequence. XPS characterization reveals that Ni atoms in Au–Ni bimetallic clusters are oxidized upon exposure to 5.0 × 10? 7 mbar O2 for 5 min at room temperature while negligible structure change can be detected when the bimetallic clusters are exposed to CO gas under the similar conditions.  相似文献   

18.
In the second part of the article, the subtractive processes—laser etching and cutting—in the presence of liquid water will be reviewed; but the rarely used methods of water assisted/underwater laser processing, such as welding, silicon wafer breaking, surface modification of polymers, pulsed laser deposition, particle formation and water mask defined microstructures fabrication, will also be described. Etching and cutting under water provide better tolerances and smaller heat-affected zone widths and avoid the re-deposition of debris. Irradiation under water results in increased wetting of fluoropolymers, and laser ablation in water vapor provides deposition of highly crystalline hydroxyapatite coatings. Laser irradiation of solid targets in water has been used to fabricate Ag, Au, Ni, Cu and carbon nanoparticles. The results of an original study on the formation of free-standing high aspect ratio Pb(ZrxTi1−x)O3 microplates fabricated by laser irradiation of Pb(ZrxTi1−x)O3 ceramics in water are also reported. The platelets were up to 60 μm in diameter and 50–160 nm in thickness. The use of neutral liquids other than water and some medical applications of underwater/water-assisted laser light driven processes will also be briefly reviewed.  相似文献   

19.
Polymer matrix nanocomposites filled with metallic and alloy nanoparticles add functionality in various applications such as optical devices and in the energy sector. However, matrix coupling agents or nanoparticle ligands may be unwanted additives, potentially inhibiting the resulting nanocomposite to be processed by injection molding. The generation of stabilizer-free Au, Ag, and AuAg alloy nanoparticle acrylate composites is achieved by picosecond-pulsed laser ablation of the respective metal target in the liquid monomer. Complementary to laser ablation of the solid alloy, we have alloyed nanoparticles by post-irradiation of Au and Ag colloids in the liquid monomer. The optical properties of the colloidal nanoparticles are successfully transferred to the solid poly(methyl methacrylate) matrix and characterized by their plasmon resonance that can be easily tuned between 400 and 600 nm by laser alloying in the liquid monomer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号