首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Blue light‐emitting polyfluorenes, PPF‐FSOs and PPF‐SOFs were synthesized via introducing spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers (2,7‐diyl and 2′,7′‐diyl) (FSO/SOF) into the poly[9,9‐bis(4‐(2‐ethylhexyloxy) phenyl)fluorene‐2,7‐diyl] (PPF) backbone, respectively. With the increasing contents of FSO and SOF moieties, the absorption and PL spectra of PPF‐FSOs show slight red shift, while that of PPF‐SOFs exhibit blue shift, respectively. The HOMO and LUMO levels reduce gradually with increasing SOF unit in PPF‐SOFs. The polymers emit blue light peaked around 430–445 nm and show an excellent spectral stability with the variation in current densities. The distinctly narrowing EL spectra were observed with the incorporation of isomers in the polymers. The full width at half maximum reduced by 15 nm for PPF‐SOFs, resulting in a blue shift with the CIE coordinates from (0.16, 0.11) to (0.16, 0.08). With a device configuration of ITO/PEDOT:PSS/EML/CsF/Al, a maximum luminance efficiency (LEmax) of 2.00 cd A?1, a maximum external quantum efficiency (EQEmax) of 3.76% with the CIE coordinates of (0.16, 0.08) for PPF‐SOF15 and a LEmax of 1.68 cd A?1, a EQEmax of 2.38% with CIE (0.16, 0.12) for PPF‐FSO10 were obtained, respectively. The result reveals that spiro[fluorene‐9,9′‐thioxanthene‐S,S‐dioxide] isomers are promising blocks for deep‐blue light‐emitting polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2332–2341  相似文献   

2.
In this paper, we theoretically explore the motivation and behaviors of the excited‐state intramolecular proton transfer (ESIPT) reaction for a novel white organic light‐emitting diode (WOLED) material 4‐tert‐butyl‐2‐(5‐(5‐tert‐butyl‐2‐methoxyphenyl)thiazolo[5,4‐d]thiazol‐2‐yl)‐phenol (t‐MTTH). The “atoms in molecules” (AIM) method is adopted to verify the formation and existence of the hydrogen bond O? H···N. By analyzing the excited‐state hydrogen bonding behaviors via changes in the chemical bonding and infrared (IR) vibrational spectra, we confirm that the intramolecular hydrogen bond O? H···N should be getting strengthened in the first excited state in four kinds of solvents, thus revealing the tendency of ESIPT reaction. Further, the role of charge‐transfer interaction is addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. Also, the electron distribution confirms the ESIPT tendency once again. The scanned and optimized potential energy curves according to variational O? H coordinate in the solvents demonstrate that the proton transfer reaction should occur in the S1 state, and the potential energy barriers along with ESIPT direction support this reaction. Based on the excited‐state behaviors reported in this work, the experimental spectral phenomenon has been reasonably explained.  相似文献   

3.
In this work, the time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer excited state of 2‐(4′‐N,N‐dimethylaminophenyl)imidazo[4,5‐b]pyridine (DMAPIP) in methanol (MeOH) solvent. All the geometric conformations of the ground state and locally excited (LE) state and the twisted intramolecular charge‐transfer (TICT) state for isolated DMAPIP and its hydrogen‐bonded complexes have been optimized. At the same time, the absorption and fluorescence spectra of DMAPIP and the hydrogen‐bonded complexes in different electronic states are also calculated. We theoretically demonstrated for the first time that the intermolecular hydrogen bond formed between DMAPIP and MeOH can induce the formation of the TICT state for DMAPIP in MeOH solvent. Therefore, the two components at 414 and 506 nm observed in the fluorescence spectra of DMAPIP in MeOH solvent were reassigned in this work. The fluorescence peak at 414 nm is confirmed to be the LE state. Furthermore, the red‐shifted shoulder at 506 nm should be originated from the hydrogen‐bonded TICT excited state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

4.
Novel aza‐diisoindolylmethene and their BF2‐chelating complexes (benzo‐fused aza‐BODIPYs) were synthesized on a large scale and in a facile manner from phthalonitrile in tBuOK‐DMF solution. The unique asymmetric donor–π‐acceptor structure facilitates B? N bond detachment in the presence of trifluoroacetic acid (TFA) in dichloromethane, resulting in sharp color change from red to colorless, with over 250 nm hypsochromic shift in the absorption maximum. This colorimetric process can be reversed by adding a very small amount of proton‐accepting solvents or compounds. A 1H and 11B NMR spectroscopy study and also density functional theory (DFT) calculations suggest that TFA‐induced B? N bond cleavage may disrupt the whole π‐conjugation of the BODIPY molecule, resulting in significant colorimetric behavior.  相似文献   

5.
In this contribution, we report a versatile method for tuning optical properties of poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene) (MEH‐PPV) in its solution with 1,2‐dichloroethane, accomplished by reacting with pyridinium formate (PF), a volatile organic salt. We can systematically control the positions of absorption and photoluminescent (PL) spectra of MEH‐PPV by adjusting the concentration of PF in the solution. The addition of 10 vol % PF caused a blue‐shift in the absorption spectra by about 65 nm. When the concentration of PF decreased to 0.1 vol %, the blue‐shift occurred to a lesser extent, about 25 nm. The measurements of PL spectra showed similar behaviors. The λmax shifted from 558 nm to 546 and 552 nm when 10 and 0.1 vol % of PF were added, respectively. The changes of PL colors from orange to yellow and green, respectively, were observed by naked eyes. Structural investigation by nuclear magnetic resonance and Fourier‐transformed infrared spectroscopy indicated that the changes of the optical properties were due to chemical modifications along the main chain and the side groups of MEH‐PPV. These results implied a simple route for engineering the HOMO–LUMO energy gap of MEH‐PPV, which could be utilized in advanced applications such as organic light‐emitting devices and solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 696–705, 2009  相似文献   

6.
《中国化学会会志》2017,64(12):1385-1391
The excited‐state intramolecular proton transfer (ESIPT) mechanism of a new compound (E )‐1‐((2,2‐diphenylhydrazono)methyl)naphthalen‐2‐ol ( EDMN ) sensor, reported and synthesized by Mukherjee et al . [Sensors Actuat. B‐Chem . 2014, 202 , 1190], is investigated in detail theoretically. The calculations on primary bond lengths, bond angles, and the corresponding infrared (IR) vibrational spectra and hydrogen‐bond energy involved in intramolecular hydrogen bond between the S0 and S1 states confirm that the intramolecular hydrogen bond is strengthened in the S1 state, which reveals the tendency of ESIPT reaction. The fact that the experimental absorption and emission spectra are well reproduced demonstrates the rationality and effectiveness of the time‐dependent density functional theory (TDDFT) level of theory we adopt here. Furthermore, intramolecular charge transfer based on the frontier molecular orbitals (MOs) gives indication of the ESIPT reaction. The constructed potential energy curves of both the S0 and S1 states while keeping the O─H distance of EDMN fixed at a series of values are used to illustrate the ESIPT process. The lower barrier of ~3.934 kcal/mol in the S1 state potential energy curve (lower than the 8.254 kcal/mol in the S0 state) provides the transfer mechanism.  相似文献   

7.
The crystal structures of the title 4‐chlorophenyl, (I), and 2‐chlorophenyl, (II), compounds, both C14H12ClNO2, have been determined using X‐ray diffraction techniques and the molecular structures have also been optimized at the B3LYP/6‐31 G(d,p) level using density functional theory (DFT). The X‐ray study shows that the title compounds both have strong intramolecular O—H...N hydrogen bonds and that the crystal networks are primarily determined by weak C—H...π and van der Waals interactions. The strong intramolecular O—H...N hydrogen bond is evidence of the preference for the phenol–imine tautomeric form in the solid state. The IR spectra of the compounds were recorded experimentally and also calculated for comparison. The results from both the experiment and theoretical calculations are compared in this study.  相似文献   

8.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
A simple and efficient protocol has been developed for the synthesis of 3‐phenylnaphtho[2,3‐b]furan‐4,9‐diones by domino reaction of α‐bromonitroalkenes to 2‐hydroxynaphthalene‐1,4‐dione. With the optimal reaction conditions [NaOAc (120 mol%), water, 70°C, 7 h], the scope of the domino reaction was explored and the green approach provided the desired products in moderate to good yields at elevated temperature under aqueous‐mediated conditions. A mechanistic rationalization for this reaction is also provided. The absorption characteristics of the compounds were examined by UV‐Vis spectra and fluorescence spectroscopy. All compounds were fluorescent in solution emitting at blue light (432–433 nm), green light (512–536 nm), or yellow light (591 nm).  相似文献   

10.
In this work, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods are used to explore the excited‐state intramolecular proton transfer (ESIPT) mechanism of a novel system 4′‐dimethylaminoflavonol (DAF). By analyzing the molecular electrostatic potential (MEP) surface, we verify that the intramolecular hydrogen bond in DAF exists in both the S0 and S1 states. We calculate the absorption and emission spectra of DAF in two solvents, which reproduce the experimental results. By comparing the bond lengths, bond angles, and relative infrared (IR) vibrational spectra involved in the hydrogen bonding of DAF, we confirm the hydrogen‐bond strengthening in the S1 state. For further exploring the photoexcitation, we use frontier molecular orbitals to analyze the charge redistribution properties, which indicate that the charge transfer in the hydrogen‐bond moiety may be facilitating the ESIPT process. The constructed potential energy curves in acetonitrile and methylcyclohexane solvents with shortened hydrogen bond distances demonstrate that proton transfer is more likely to occur in the S1 state due to the lower potential barrier. Comparing the results in the two solvents, we find that aprotic polar and nonpolar solvents seem to play similar roles. This work not only clarifies the excited‐state behaviors of the DAF system but also successfully explains its spectral characteristics.  相似文献   

11.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

12.
MP2/6-31 g(d) calculations were performed verifying the existences of blue-shifting X-C≡C-CF2-H…OH2 hydrogen bonds.Detailed analyses revealed that the interaction energy and donor-acceptor distance had good correlations with the substituent Hammett constants.However,the extent of C-H bond contraction and the blue shift of the C-H stretching vibration did not show any good correlation with the traditional substituent constants,indicating that certain more complicated mechanisms might be involved in the present systems.Nevertheless,it was found that highly electron-with-drawing susbtituents were not favorable to the C-H bond contraction,and it was suggested that the attractive interaction between water and the carbon of -CF2H probably played an important role in the blue shift.  相似文献   

13.
An interesting flourophore, 4‐(2,5‐dimethoxyphenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) was synthesized by mixing an equivalent molar quantity of hippuric acid and 2,5‐dimethoxybenzaldehyde in acetic anhydride in the presence of anhydrous sodium acetate. The absorption and fluorescence characteristics of 4‐(2,5‐dimethoxy‐phenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) were investigated in different solvents. DMPO dye exhibits red shift in both absorption and emission spectra as solvent polarity increases, indicating change in the dipole moment of molecules upon excitation due to an intramolecular charge transfer interaction. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. A crystalline solid of DMPO gave strong excimer like emission at 630 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B‐type class of Steven's Classification. DMPO displayed fluorescence quenching by triethylamine via nonemissive exciplex formation.  相似文献   

14.
4‐Methyl‐6,8‐dihydroxy‐7H‐benz[de]anthracen‐7‐one was isolated from the sap of Aloe by column chromatography. Its 1H and 13C NMR spectra were completely assigned by utilizing two‐dimensional 1H‐detected heteronuclear one‐bond (HMQC) and multiple‐bond (HMBC) chemical shift correlation experiments together with 1H–1H COSY and DEPT techniques. These techniques were also valuable in assigning the protons and carbons of those benzanthrone compounds which were previously incompletely reported because of the overlap of proton signals. The molecular structure was elucidated by 2D NMR analysis. The spectral properties (MS, IR and UV) are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Using ultrafast fluorescence upconversion and mid‐infrared spectroscopy, we explore the role of hydrogen bonds in the photoinduced electron transfer (ET) between 9‐fluorenone (FLU) and the solvents trimethylamine (TEA) and dimethylamine (DEA). FLU shows hydrogen‐bond dynamics in the methanol solvent upon photoexcitation, and similar effects may be anticipated when using DEA, whereas no hydrogen bonds can occur in TEA. Photoexcitation of the electron‐acceptor dye molecule FLU with a 400 nm pump pulse induces ultrafast ET from the amine solvents, which is followed by 100 fs IR probe pulses as well as fluorescence upconversion, monitoring the time evolution of marker bands of the FLU S1 state and the FLU radical anion, and an overtone band of the amine solvent, marking the transient generation of the amine radical cation. A comparison of the experimentally determined forward charge‐separation and backward charge‐recombination rates for the FLU‐TEA and FLU‐DEA reaction systems with the driving‐force dependencies calculated for the forward and backward ET rates reveals that additional degrees of freedom determine the ET reaction dynamics for the FLU‐DEA system. We suggest that hydrogen bonding between the DEA molecules plays a key role in this behaviour.  相似文献   

16.
The intermolecular hydrogen bonds of mono‐ and dihydrated complexes of 7‐(3′‐Pyridyl)indole (7‐3′PI) have been investigated using the time‐dependent density functional theory (TD‐DFT) method. The electrostatic potential analysis of monomer 7‐3′PI and 7‐(3′‐Pyridyl)indole‐water (7‐3′PI‐W) indicates that an intermolecular hydrogen bond between two waters can be formed for 7‐(3′‐Pyridyl)indole‐2water (7‐3′PI‐2W) complex. The calculated bond lengths of the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W in the S1 state (the first excited singlet state) are all shortened compared to the ground state. By the analysis of bond length, charge population and infrared spectra, it is demonstrated that the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W are all strengthened upon electronic excitation to the S1 state. Moreover, the fluorescence of 7‐3′PI‐W and 7‐3′PI‐2W are all red‐shifted to larger wavelength compared to monomer 7‐3′PI. The red‐shift of fluorescence peak of 7‐3′PI‐W and 7‐3′PI‐2W should be attributed to the change of hydrogen bond interaction before and after photoexcitation. Therefore, it can be concluded that the intermolecular hydrogen bonding strengthening in the excited S1 state induces the fluorescence weakening of 7‐3′PI.  相似文献   

17.
The C?H???Y (Y=hydrogen‐bond acceptor) interactions are somewhat unconventional in the context of hydrogen‐bonding interactions. Typical C?H stretching frequency shifts in the hydrogen‐bond donor C?H group are not only small, that is, of the order of a few tens of cm?1, but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen‐bond acceptor. In this work we examine the C?H???N interaction in complexes of 7‐azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra‐red (FDIR) method. Although the hydrogen‐bond acceptor, 7‐azaindole, has multiple sites of interaction, it is found that the C?H???N hydrogen‐bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C?H stretching frequency is found to be red shifted by 82 cm?1 in the CHCl3 complex, which is the largest redshift reported so far in gas‐phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C?H frequency is blue shifted by 4 cm?1. This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm?1. This discrepancy is analogous to that reported for the pyridine‐CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A­ 2005 , 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C?H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug‐cc‐pVDZ level) as 6.46 and 5.06 kcal mol?1, respectively.  相似文献   

18.
The structure of trans-[Pd(dtco-3-OH)2] (ClO4)2·2DMSO, in which dtco-3-OH is dithiacyclooctan-3-ol and DMSO is dimethyl sulfoxide, was determined by X-ray crystallographic analysis. The crystal data: space group pi, a = 0.7077(2) nm, b = 1.0788(1) nm, c = 1.1111(1) nm, α=67.710(8)°, β = 73. 59(2)°, γ = 85. 39(2)°,R1 = 0 . 0368 and Rw = 0.0998. The palladium (II) is coordinated by four sulfur atoms with a regular square planar configuration. The Pd-S distances are 0.2314(1) and 0.2317(1) nm, respectively. Both dtco-3-OH ligands are in the boat-chair configuration and two hydroxyl groups are on the opposite sites of the PdS4 coordination plane and are towards Pd(II). The Pd-O distance is 0. 285 nm, indicating a weak interaction between them. A typical hydrogen bond between the hydroxyl group of dtco-3-OH ligand and DMSO was observed in the crystal structure. An aqueous solution prepared with the crystals of the complex was used for the investigation of electrospray mass spectrometry ( ESMS ). Besid  相似文献   

19.
Time-dependent density functional theory (TD-DFT) method was used to study the excited-state hydrogen bonding of three esculetin complexes formed with aprotic solvents. The geometric structures, molecular orbitals (MOs), electronic spectra and the infrared (IR) spectra of the three doubly hydrogen-bonded complexes formed by esculetin and aprotic solvents dimethylsulfoxide (DMSO), tetrahyrofuran (THF) and acetonitrile (ACN) in both ground state S(0) and the first singlet excited state S(1) were calculated by the combined DFT and TD-DFT methods with the COSMO solvation model. Two intermolecular hydrogen bonds can be formed between esculetin and the aprotic solvent in each hydrogen-bonded complex. Based on the calculated bond lengths of the hydrogen bonds and the groups involved in the formation of the intermolecular hydrogen bonds in different electronic states, it is demonstrated that one of the two hydrogen bonds formed in each hydrogen-bonded complex is strengthened while the other one is weakened upon photoexcitation. Furthermore, it is found that the strength of the intermolecular hydrogen bonds formed in the three complexes becomes weaker as the solvents change from DMSO, via THF, to ACN, which is suggested to be due to the decrease of the hydrogen bond accepting (HBA) ability of the solvents. The spectral shifts of the calculated IR spectra further confirm the strengthening and weakening of the intermolecular hydrogen bonds upon the electronic excitation. The variations of the intermolecular hydrogen bond strengths in both S(0) and S(1) states are proposed to be the main reasons for the gradual spectral shifts in the absorption and fluorescence spectra both theoretically and experimentally.  相似文献   

20.
The intramolecular C? H···O?S H‐bond in the aromatic sulfines, HRC?S?O, was analyzed by NBO and QTAIM methods. The results of QTAIM analysis at the MP2/aug‐cc‐pVDZ level of theory show that the C? H···O?S H‐bond meets all the characteristics of an improper, blue shift hydrogen bond. NBO analysis at the MP2/6–31++G(d,p)//MP2/aug‐cc‐pVDZ level predicts a normal relationship between change of bond length and C? H rehybridization. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号