首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

2.
Sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA40) and N,N‐dicyclohexylterephthalamide (NABW) are high effective nucleating agents for inducing the formation of α‐isotactic polypropylene (α‐iPP) and β‐iPP, respectively. The isothermal crystallization kinetics of iPP nucleated with nucleating agents NABW, NA40/NABW (weight ratio of NA40 to NABW is 1:1) and NA40 were investigated by differential scanning calorimetry (DSC) and Avrami equation was adopted to analyze the experimental data. The results show that the addition of NABW, NA40/NABW and NA40 can shorten crystallization half‐time (t1/2) and increase crystallization rate of iPP greatly. In these three nucleating agents, the α nucleating agent NA40 can shorten t1/2 of iPP by the largest extent, which indicates that it has the best nucleation effect. While iPP nucleated with NA40/NABW compounding nucleating agents has shorter t1/2 than iPP nucleated with NABW. The Avrami exponents of iPP and nucleated iPP are close to 3.0, which indicates that the addition of nucleating agents doesn't change the crystallization growth patterns of iPP under isothermal conditions and the crystal growth is heterogeneous three‐dimensional spherulitic growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 590–596, 2007  相似文献   

3.
The melt crystallization behaviors and crystalline structures of poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate), and poly(ethylene‐co‐trimethylene terephthalate) (PETT) were investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X‐ray diffraction at various crystallization temperatures (Tcs). The PETT copolymers were synthesized via the polycondensation of terephthalate with ethylene glycol and trimethylene glycol (TG) in various compositions. The copolymers with 69.0 mol % or more TG or 31.0 mol % or less TG were crystallizable, but the other copolymers containing 34–56 mol % TG were amorphous. The DSC isothermal results revealed that the addition of a small amount of flexible TG (up to 21 mol %) to the PET structure slightly reduced the formation of three‐dimensional spherulites. A greater TG concentration (91–100%) in the copolyesters changed the crystal growth from two‐dimensional to three‐dimensional. The DSC heating scans after the completion of isothermal crystallization at various Tcs showed three melting endotherms for PET, PETT‐88, PETT‐84, and PETT‐79 and four melting endotherms for PETT‐9 and PETT. The presence of an additional melting endotherm could be attributed to the melting of thinner and imperfect copolyester crystallites. Analyses of the Lauritzen–Hoffman equation demonstrated that PETT‐88 had the highest values of the product of the lateral and folding surface free energies, and this suggested that the addition of small amounts of flexible trimethylene terephthalate segments to PET disturbed chain regularity, thus increasing molecular chain mobility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4255–4271, 2004  相似文献   

4.
The heat capacity of poly(trimethylene terephthalate) (PTT) has been analyzed using temperature‐modulated differential scanning calorimetry (TMDSC) and compared with results obtained earlier from adiabatic calorimetry and standard differential scanning calorimetry (DSC). Using quasi‐isothermal TMDSC, the apparent reversing and nonreversing heat capacities were determined from 220 to 540 K, including glass and melting transitions. Truly reversible and time‐dependent irreversible heat effects were separated. The extrapolated vibrational heat capacity of the solid and the total heat capacity of the liquid served as baselines for the analysis. As one approaches the melting region from lower temperature, semicrystalline PTT shows a reversing heat capacity, which is larger than that of the liquid, an observation that is common also for other polymers. This higher heat capacity is interpreted as a reversible surface or bulk melting and crystallization, which does not need to undergo molecular nucleation. Additional time‐dependent, reversing contributions, dominating at temperatures even closer to the melting peak, are linked to reorganization and recrystallization (annealing), while the major melting is fully irreversible (nonreversing contribution). © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 622–631, 2000  相似文献   

5.
This review focuses on new insights into the crystal melting transition and the amorphous glass transition of polymers that have been gained through recent advances in thermoanalytical methods. The specific heat capacity can now be studied under two extreme limits, that is, under quasi‐isothermal conditions (limit of zero heating rate) and, at the other end of the scale, under rapid heating conditions (heating rates on the order of thousands of degrees per second), made possible through nanocalorimetry. The reversible melting, and multiple reversible melting, of semicrystalline polymers is explored using quasi‐isothermal temperature modulated differential scanning calorimetry, TMDSC. The excess reversing heat capacity, above the baseline, measured under nearly isothermal conditions is attributed to locally reversible surface melting and crystallization processes that do not require molecular nucleation. Observations of double reversible melting endotherms in isotactic polystyrene suggest existence of two distinct populations of crystals, each showing locally reversible surface melting. The second subject of the review, nanocalorimetry, is utilized to study samples of small mass under conditions of very fast heating and cooling. The glass transition properties of thin amorphous polymer films are observed under adiabatic conditions. The glass transition temperature appears to be independent of film thickness, and is observed even in ultra‐thin films. Recrystallization and reorganization during rapid heating are studied by nanocalorimetry of semicrystalline polymers. The uppermost endotherm seen under normal DSC scanning of poly(ethylene terephthalate) is caused by reorganization, and vanishes under the rapid heating conditions (3000K/s) provided by nanocalorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 629–636, 2005  相似文献   

6.
The heat capacity of poly[carbonyl(ethylene‐co‐propylene)] with 95 mol % C2H4? CO? (Carilon EP®) was measured with standard differential scanning calorimetry (DSC) and temperature‐modulated DSC (TMDSC). The integral functions of enthalpy, entropy, and free enthalpy were derived. With quasi‐isothermal TMDSC, the apparent reversing heat capacity was determined from 220 to 570 K, including the glass‐ and melting‐transition regions. The vibrational heat capacity of the solid and the heat capacity of the liquid served as baselines for the quantitative analysis. A small amount of apparent reversing latent heat was found in the melting range, just as for other polymers similarly analyzed. With an analysis of the heat‐flow rates in the time domain, information was collected about latent heat contributions due to annealing, melting, and crystallization. The latent heat decreased with time to an even smaller but truly reversible latent heat contribution. The main melting was fully irreversible. All contributions are discussed in the framework of a suggested scheme of six physical contributions to the apparent heat capacity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1565–1577, 2001  相似文献   

7.
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three‐dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant Kg than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, σe = 101.7–58.0 × 10?3 J/m2, and work of chain folding, q = 5.79–3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory–Huggins interaction parameters were obtained. It indicated that these blends were thermodynamically miscible in the melt. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1320–1330, 2006  相似文献   

8.
Crystallization and melting behaviors of isotactic polypropylene (iPP) nucleated with compound nucleating agents of sodium 2,2′‐methylene‐bis (4,6‐di‐tert‐butylphenyl) phosphate (hereinafter called as NA40)/dicyclohexylterephthalamide (hereinafter called as NABW) (weight ratio of NA40 to NABW is 1:1) were studied by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD), the relative β‐amount of iPP nucleated with these compound nucleating agents was also calculated in Turner‐Jones equation by using wide‐angle X‐ray diffraction data. Under isothermal crystallization, there exists a temperature range favorable for formation of β‐iPP. When the concentration of compound nucleating agents is 0.2 wt %, the temperature range is from 100 to 140 °C. While in nonisothermal crystallization, lower cooling rate is favorable for form of β‐iPP and the relative β‐amount of iPP increases with the decreasing of cooling rate in crystallization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 911–916, 2008  相似文献   

9.
Evolution of molecular conformation in uniaxially deformed isotactic polypropylene (iPP) as a function of temperature is investigated by time‐resolved polarized Fourier‐transform infrared spectroscopy. It is observed that oriented crystals (microfibrils) induced by deformation possess better thermal stability compared with isotropic spherulites. 2D correlation analysis reveals that the relaxation process of ordered helices in deformed iPP could be divided into two regions referring to the melting of different crystalline structures. No obvious sequential change of ordering conformations observed in low temperature region is attributed to melting of defective or destructed crystals. However, notable sequential changes of helices occur in the high temperature region; interestingly, long helices are more thermally stable than short helices. The central region of microfibrils is suggested to consist of a large amount of long helical bundles, and the short ordering segments are primarily located in the outer lateral surfaces. A physical picture of the conformational distribution in deformation‐induced microfibrils is thus gained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 673–684  相似文献   

10.
The effect of CO2 on the nonisothermal crystallization of isotactic polypropylene (iPP) was studied with high‐pressure differential scanning calorimetry at cooling rates of 0.2–5 °C/min. CO2 significantly delayed the melt crystallization of iPP, and both the crystallization temperature and the heat of crystallization decreased with increasing CO2 pressure. The crystallization rate of iPP, as characterized by the half‐time, was also prolonged by the presence of CO2. With a modified Ozawa model developed by Seo, the Avrami crystallization exponent n of iPP was calculated. This value was depressed by the addition of CO2 and was strongly dependent on the CO2 pressure at low cooling rates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1518–1525, 2003  相似文献   

11.
Compared with the most stable crystalline form of isotactic polypropylene (α‐iPP), β‐iPP shows superior impact strength and high temperature performance, though the mechanism of how the frustrated structure of β‐iPP is formed still remains unclear. In present work, the single crystal structure of a traditional β‐iPP nucleating agent, N,N′‐dicyclohexylterephthalamide (DCHT), was obtained for the first time and correlated with the epitaxial crystallization of β‐iPP on the surface of DCHT crystal. The combination of synchrotron radiation X‐ray microdiffraction and molecular chain packing model confirmed that a two dimensional match of chain‐axis and inter‐chain direction coexists between β‐iPP (110) plane and DCHT (001) plane. It was further found that an epitaxial model is helpful to understand the formation of the frustrated structure of 31 helices packing in β‐iPP. The molecular mechanics computation showed that as the (001) plane of DCHT is fixed, the packing mode of β‐iPP (110) plane on the substrate surface is more stable than that of α‐iPP (010) plane. This work clarifies the epitaxial crystallization mechanism of β‐iPP on DCHT by employing both experimental and computational evidences. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 418–424  相似文献   

12.
Proper filler‐matrix compatibility is a key factor in view of obtaining nanocomposites with well‐dispersed nanofillers displaying enhanced properties. In this respect, polymer‐filler interaction can be improved by a proper combination of matrix and nanofiller polarities. This is explored for matrices ranging from nonpolar high density poly(ethylene) to ethylene‐vinyl acetate (EVA) copolymers with varying vinyl acetate contents, in combination with several types of organoclay or carbon nanotubes. A novel in situ characterization methodology using modulated temperature differential scanning calorimetry is presented to evaluate the matrix‐filler interaction. During quasi‐isothermal crystallization of the matrix, an “excess” contribution is observed in the recorded heat capacity signal because of reversible melting and crystallization. Its magnitude considerably decreases upon addition of nanofiller in case of strong interfacial interaction, whereas the influence is moderate in case of a less interacting matrix‐filler combination. It is suggested that the “excess heat capacity” can be used to quantify the segmental mobility of polymer chains in the vicinity of the nanofiller. Hence it provides valuable information on the strength of interaction, governed by the physical and chemical nature of matrix and filler. Heating experiments subsequent to quasi‐isothermal crystallization point at a certain degree of molecular ordering, responsible for crystal nucleation in EVA copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1291–1302, 2007  相似文献   

13.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

14.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

15.
The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n ≈ 2 for both melt and cold crystallization. With the Hoffman–Weeks method, the equilibrium melting point is estimated to be 406 °C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (Kg) of the isothermal melt and cold crystallization is estimated. In addition, the Kg value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1992–1997, 2000  相似文献   

16.
The complex melting behavior of isotactic polypropylene, after isothermal crystallization, was studied within the context of step‐like melting mechanisms which were previously proposed for high temperature polymers. The morphological characteristics of the melting process were also studied as a function of molecular weight, and close similarities were observed with respect to high temperature polymers. Positive birefringence crystals of low molecular weight samples developed double melting behavior in three steps. The first melting step was assigned to continuous melting of secondary crosshatch reversing lamellae, together with recrystallization of the remaining isothermal crystals. In the second melting step (first melting endotherm), crystals tended to lose their original coarse negative birefringence due to melting of secondary reversing branching. This effect rendered new, finer texture, but still negative birefringence crystals. In the third melting step (second melting endotherm), there was a combination of melting of two crystal populations, one consisting of the remaining fraction of reversing primary crystals, and the other consisting of nonreversing primary crystals. A crosshatch secondary branching model was therefore proposed to explain the overall results. Mixed birefringence spherulites of high molecular weight samples displayed similar, although proportional, behavior under identical crystallization and melting conditions corroborating the proposed melting mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2188–2200, 2008  相似文献   

17.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The mechanism of adhesion at semicrystalline polymer interfaces between isotactic polypropylene (iPP) and linear low‐density polyethylene (PE) was studied with transmission electron microscopy (TEM) and an asymmetric‐double‐cantilever‐beam test. From the TEM images, both the interfacial width and the lamellar thickness of the polymers were extracted. During annealing, the interfacial width increased with the annealing temperature, and this indicated the accumulation of amorphous polymers at the interface. The interfacial strength, determined from the critical fracture energy (Gc), also increased with the annealing temperature and reached a maximum above the melting temperatures of iPP and PE, whereas the smallest Gc value was obtained below the melting temperatures of the two materials. A mechanism of interfacial strengthening was proposed accounting for the competition between the interdiffusion of PE and crystallization of iPP. As the annealing temperature increased, the rates of PE diffusion and iPP crystallization increased. Although the crystallization of iPP hindered the interdiffusion of PE, both the interfacial width and the fracture energy increased with the temperature, and this indicated that PE interdiffusion dominated iPP crystallization. Below the critical temperature, the fracture surfaces of both iPP and PE were smooth, and chain pullout dominated the fracture mechanism. Above the critical temperature, iPP crystallization still hindered the interdiffusion, and crazes could be seen on the iPP side. Above the melting temperatures of the two materials, ruptured surfaces could also be seen on the PE side, and crazing was the fracture mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2667–2679, 2004  相似文献   

19.
The nonisothermal crystallization of multiwall carbon nanotube (MWNT)/isotactic polypropylene (iPP) nanocomposites was investigated. The results derived from the differential scanning calorimetry curves (onset temperature, melting point, supercooling, peak temperature, half‐time of crystallization, and enthalpy of crystallization) were compared with those of neat iPP. The data were also processed according to Ozawa's theory and Dobreva's approach. These results and X‐ray diffraction data showed that the MWNTs acted as α‐nucleating agents in iPP. Accordingly, MWNT/iPP was significantly different from neat iPP: A fibrillar morphology was observed instead of the usual spherulites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 520–527, 2003  相似文献   

20.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号