首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The selectivities of different β‐nucleating agents might be quite different from each other, which is important in determining the crystallization and properties of the obtained β‐isotactic polypropylene (β‐iPP). However, the relationship between molecular structure and dynamic crystallization behavior of β‐iPP nucleated by dual‐selective β‐nucleating agent (DS‐β‐NA) is still not clear. In this study, the dynamic crystallization and melting behavior of two β‐iPP with nearly same average isotacticity but different stereo‐defect distribution, nucleated by a DS‐β‐NA (N,N′‐dicyclohexyl‐2,6‐naphthalenedicarboxamide; trade name TMB‐5), were studied by differential scanning calorimetry, wide‐angle X‐ray diffraction, and scanning electronic microscopy. The results indicated that in the presence of TMB‐5, the dynamic crystallization and melting behavior of the samples are quite different because the joint effects of the dual selectivity of TMB‐5 and stereo‐defect distribution of the iPP under different cooling rates. Two important roles were observed: (i) slow cooling rate favors the formation of high β‐fraction; and (ii) high crystallization temperature favors the crystallization of α‐phase accelerated by TMB‐5. Generally, the dual selectivity of the DS‐β‐NA, the stereo‐defect distribution of iPP, and the cooling rate were important factors in determining the formation of β‐crystal. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Aiming at further investigating the combination effect of concentration of β‐nucleating agent (β‐NA) and stereo‐defect distribution on the crystallization behavior of β‐nucleated isotactic polypropylene (β‐iPP), in this study, the crystallization behavior and polymorphic morphology of twoβ‐iPP resins with nearly same average isotacticity (PP‐A and PP‐B) but different uniformities of stereo‐defect distribution were investigated by differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and polarized optical microscopy (POM). The results of DSC and WAXD showed that the addition of TMB‐5 increases the crystallization temperature and decreases the spherulite sizes of both PP‐A and PP‐B, and reduces their crystallization energy barriers as well; however, the polymorphic behaviors of PP‐A and PP‐B exhibit different dependence on the TMB‐5 concentration. For PP‐A with less uniform distribution of stereo‐defects, β‐phase can be observed only when the TMB‐5 concentration is no less than 0.1 wt.%, while for PP‐B with more uniform stereo‐defect distribution, addition of 0.01 wt.% TMB‐5 can induce the formation of β‐phase. Moreover, the analysis of POM indicated that the crystalline morphologies of both PP‐A and PP‐B change greatly with the TMB‐5 concentration, and the variation features of PP‐A and PP‐B are quite different from each other. PP‐B with more uniform stereo‐defect distribution was more favorable for the formation of large amount of β‐phase in the presence of wide concentration range of TMB‐5. The different polymorphic behaviors and their different dependences on the β‐NA concentration were related to the different uniformities of stereo‐defect distribution of the samples, since the distribution of stereo‐defects could restrain the regular insertion of molecular chains during crystallization and thus determine the tendency the α‐phase crystallization of the sample. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of CO2 on the nonisothermal crystallization of isotactic polypropylene (iPP) was studied with high‐pressure differential scanning calorimetry at cooling rates of 0.2–5 °C/min. CO2 significantly delayed the melt crystallization of iPP, and both the crystallization temperature and the heat of crystallization decreased with increasing CO2 pressure. The crystallization rate of iPP, as characterized by the half‐time, was also prolonged by the presence of CO2. With a modified Ozawa model developed by Seo, the Avrami crystallization exponent n of iPP was calculated. This value was depressed by the addition of CO2 and was strongly dependent on the CO2 pressure at low cooling rates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1518–1525, 2003  相似文献   

4.
This article reports crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative (TMB‐5) as β‐form nucleating agent. The effects of nucleating agent concentration, thermal history and assemble morphology of nucleating agent on the crystallization behaviors of iPP were studied by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The results indicated that the TMB‐5 concentration should surpass a threshold value to get products rich in β‐iPP. The diverse morphologies of TMB‐5 are determined by nucleating agent concentration and crystallization condition. At higher concentrations, the recrystallized TMB‐5 aggregates into needle‐like structure, which induces mixed polymorphic phases on the lateral surface and large amount of β modification around the tip. High β nucleation efficiency was obtained at the lowest studied crystallization temperature, which is desirable for real molding process. TMB‐5 prefers to recrystallize from the melt at higher concentration and lower crystallization temperature. The difference in solubility, pertinent to concentration and crystallization temperature, determined the distinct crystallization behaviors of iPP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1725–1733, 2008  相似文献   

5.
Sodium benzoate (SB), a conventional nucleating agent of α‐phase isotactic polypropylene (iPP) was discovered to induce the creation of β‐phase iPP under certain crystalline conditions. Polarized optical microscopy (POM) and wide angle X‐ray diffraction (WAXD) were carried out to verify the versatile nucleating activity of SB and investigate the influences of SB's content, isothermal crystallization temperature, and crystallization time on the formation of β‐phase iPP. The current experimental results indicated that, under isothermal crystallization conditions, SB showed peculiar nucleating characteristics on inducing iPP crystallization which were different from those of the commercial β form nucleating agent (TMB‐5). The content of β crystal form of iPP nucleated with SB (PP/SB) increased initially with the increase of crystallization temperature, nucleating agent (SB) percentage or crystallization time, reached a maximum value, and then decreased as the crystallization temperature, nucleating agent percentage or crystallization time further increased. While the content of β crystal form of iPP nucleated with TMB‐5 (PP/TMB‐5) showed a completely different changing pattern with the crystallization conditions. The obvious difference of the two kinds of nucleating agents on inducing iPP crystallization can be explained by the versatile nucleating ability of SB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1183–1192, 2008  相似文献   

6.
The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene (iPP) were analyzed. It is found that the crystallization temperatures of nucleated iPP were increased by above 11.0°C and the relative contents of β‐crystals (Kβ ) in iPP reached above 0.40 after addition of compound nucleating agents. The Kβ values depend on cooling rate, crystallization temperature in isothermal crystallization, and the difference between the crystallization temperatures of iPP nucleated by two individual nucleating agents. The nonisothermal crystallization kinetics were studied by Caze method and Mo method, respectively. The effective activation energy was calculated by the Friedman's method. The results illustrate that the half crystallization time was shortened and the crystallization rate was increased obviously after addition of nucleating agents, and the effective activation energy was increased with the relative crystallinity.  相似文献   

7.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

8.
The crystallization behavior of isotactic propylene‐1‐hexene (PH) random copolymer having 5.7% mole fraction of hexene content was investigated using simultaneous time‐resolved small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For this copolymer, the hexene component cannot be incorporated into the unit cell structure of isotactic polypropylene (iPP). Only α‐phase crystal form of iPP was observed when samples were melt crystallized at temperatures of 40 °C, 60 °C, 80 °C, and 100 °C. Comprehensive analysis of SAXS and WAXD profiles indicated that the crystalline morphology is correlated with crystallization temperature. At high temperatures (e.g., 100 °C) the dominant morphology is the lamellar structure; while at low temperatures (e.g., 40 °C) only highly disordered small crystal blocks can be formed. These morphologies are kinetically controlled. Under a small degree of supercooling (the corresponding iPP crystallization rate is slow), a segmental segregation between iPP and hexene components probably takes place, leading to the formation of iPP lamellar crystals with a higher degree of order. In contrast, under a large degree of supercooling (the corresponding iPP crystallization rate is fast), defective small crystal blocks are favored due to the large thermodynamic driving force and low chain mobility. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 26–32, 2010  相似文献   

9.
The thermal behavior of poly(ethylene‐co‐2,2‐bis[4‐(ethylenoxy)‐1,4‐phenylene]propane terephthalate) (PET/BHEEBT) copolymers was investigated by thermogravimetric analysis and differential scanning calorimetry. A good thermal stability was found for all the samples. The thermal analysis carried out using DSC technique showed that the Tm of the copolymers decreased with increasing BHEEBT unit content, differently from Tg, which on the contrary increased. Wide‐angle X‐ray diffraction measurements permitted identifying the kind of crystalline structure of PET in all the semicrystalline samples. The multiple endotherms similar to PET were also evidenced in the PET/BHEEBT samples, due to melting and recrystallization processes. By applying the Hoffman–Weeks' method, the Tm° of PET and its copolymers was derived. The isothermal crystallization kinetics was analyzed according to Avrami's treatment and values of the exponent n close to 3 were obtained, independently of Tc and composition. Moreover, the introduction of BHEEBT units was found to decrease PET crystallization rate. Lastly, the presence of a crystal‐amorphous interphase was evidenced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1441–1454, 2005  相似文献   

10.
《先进技术聚合物》2018,29(6):1613-1619
Poly(2‐methyl‐1,5‐pentaneoxamide) ( PM52) with relative viscosity up to 3.3 were synthesized using 2‐methyl‐1,5‐pentanediamine (M52) and dibutyl oxalate via spray/melt polycondensation. The obtained polyoxamide was characterized by FTIR, 1H‐NMR, WAXD, DSC, and TGA. The Tm of PM52 was 200°C with a heat of fusion (ΔHf) of 59.7 J·g−1, crystallization temperature of 125°C, and a crystallization enthalpy (ΔHc) of 42.6 J·g−1. Isothermal crystallization studies revealed a 2‐dimensional crystallization phenomenon which didn't vary with change in crystallization temperature. TGA analysis revealed that the thermal stability of PM52 compared well with commercial PA6, and XRD studies revealed an α form of crystal structure and that the polymers possessed good crystallinity. Saturated water absorption of 4.6 wt% was recorded for the new polyoxamide synthesized as compared with 10.6 wt% for commercial PA6; such properties are good for applications in the food industry, plastics, and electronics industry where dimensional stability is a key requirement.  相似文献   

11.
Poly(2‐alkyl‐2‐oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (Tg) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt‐recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 °C and PiPropOx between 90 and 150 °C show that PAOx can crystallize in bulk when enough time is given. The decrease of Tg and the corresponding increase in chain mobility at T > Tg with increasing alkyl side chain length can be attributed to an increasing distance between the polymer backbones and thus decreasing average strength of amide dipole interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 721–729  相似文献   

12.
In this work, the nonisothermal crystallization and subsequent melting behaviors of polypropylene (PP) nucleated with different nucleating agents (NAs) have been studied. α‐phase NA 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988), β‐phase NA aryl amides compound (TMB‐5), and their compounds were introduced into PP matrix, respectively. The results show that the nonisothermal crystallization behaviors and crystalline structures of PP with compounded NAs are dependent on the composition of NAs. In the sample of PP with 0.1 wt % DMDBS and 0.1 wt % TMB‐5, the nucleation efficiency (NE) of TMB‐5 is much higher than that of DMDBS and PP crystallizes mainly nucleated by TMB‐5, and in this condition, β‐phase PP is the main crystallization structure. For the sample of PP with 0.2 wt % DMDBS and 0.2 wt % TMB‐5, 0.2 wt % DMDBS has higher NE than 0.2 wt % TMB5, and α‐phase is the main crystalline structure. The cooling rate is proved to be very important in controlling the nonisothermal crystallization behavior and the final crystalline structure of nucleated PP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1853–1867, 2008  相似文献   

13.
The effect of X‐ray irradiation on crystallization of the blend of poly(N‐methyldodecano‐12‐lactam) (PMDL) with 29.5% of statistical copolymer poly(styrene‐stat‐acrylic acid) (PSAA) was studied using DSC, WAXD, and solid‐state 13C NMR methods. Significant acceleration of crystallization was found in the as‐prepared X‐ray irradiated (XI), that is, WAXD‐measured, samples compared with the nonirradiated (NI) ones. In the XI blend, the incubation period was shortened and crystallization proceeded at significantly higher rate. In the asymptote, after 100–120 days, both NI and XI samples reached the same final crystallinity of about 18%. The second DSC runs indicated that the stimulating effect of X‐ray irradiation was eliminated by heating the sample during the first run. The 13C NMR studies have shown that PMDL chains crystallize exclusively in cis conformation on the C? N bond. Both in neat PMDL and in the blend with PSAA, the XI samples contained a significantly higher proportion of cis conformers in amorphous phase than the NI samples. It is suggested that energy absorbed by the sample during the standard WAXD measurement helps overcome the barrier of the trans/cis transition in the PMDL molecules. This opens the way to the formation of a higher number of critical equilibrium nuclei and, finally, results in accelerated crystallization of the XI samples. No irreversible changes were found in the XI samples. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 311–321, 2008  相似文献   

14.
A novel nucleating agent (TBC8‐t), self‐assembled with ptert‐butylcalix[8]arene (TBC8) and toluene, was used to manipulate the crystallization behavior of poly(L ‐lactic acid) (PLLA). Toluene molecules were used to adjust the crystallization structure of TBC8. Differential scanning calorimetry results show that the crystallization peak temperature (Tc) and crystallization rate (ΔHc/time) of PLLA nucleated with TBC8‐t are 132.3 °C and 0.24 J/gs, respectively, which are much higher than that with conventional nucleating agent‐talc (Tc = 119.3 °C, ΔHc/time = 0.13 J/gs). The results of polarized optical microscopy demonstrate that TBC8‐t could greatly enhance the crystallization rate of PLLA by increasing the nucleation rate rather than crystal growth rate. Along with an improvement of the crystallization rate, the crystalline morphology of PLLA is also affected by TBC8‐t. The addition of TBC8‐t transforms most of the original spherulite crystals into sheaf‐like crystals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1235–1243, 2010  相似文献   

15.
A series of poly(1,4‐cyclohexylenedimethylene 1,4‐cyclohexanedicarboxylate) (PCCD) samples, characterized by different cis/trans ratio of the 1,4‐cyclohexanedicarbonyl unit, have been synthesized and analyzed by thermogravimetry (TGA), calorimetry (DSC), and X‐ray diffraction (WAXD). The thermal stability results are good and are not affected by the stereochemistry of the 1,4‐cyclohexylene units. On the other hand, the thermal transitions are notably influenced by the cis/trans content. With the increment of the trans content the polymer changes from completely amorphous to semicrystalline material. Tg, Tm, and crystallinity increase. These results suggest that the trans configuration induces a better chain packing and higher symmetry, improving the crystallizability of the samples. The effect of the molecular structure on the thermal properties is analyzed by using a statistical approach. From the effective correlations found between stereochemistry of the C6 rings and transition temperatures it is possible to extrapolate that the configuration of 1,4‐cyclohexylene ring deriving from 1,4‐cyclohexanedicarboxylic acid or dimethyl 1,4‐cyclohexanedicarboxylate results to be the main element responsible for the thermal properties. This is due to the high rigidity of the 1,4‐cyclohexanedicarbonyl unit with respect to 1,4‐cyclohexanedimethyleneoxy unit, deriving from the diol. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 619–630, 2008  相似文献   

16.
Isothermal crystallization of poly(butylene terephthalate) (PBT) blended with oligomeric poly(ε‐caprolactone) (PCL) is investigated by polarized optical microscopy and differential scanning calorimetry at various temperatures (Tc). The growth rate of PBT spherulites is found to depend on time (t), as the spherulite radius (r) linearly increases with t at the early stages of crystallization (rt), then, with the progress of phase transition, the spherulite radius becomes dependent on the square root of the time (rt1/2) until termination of crystal growth. The nonlinear advance of the crystal growth front is caused by a varied composition of the melt phase in contact with the growing crystals, due to diffusion of mobile PCL chains away from the spherulite surface. The melt phase becomes spatially inhomogeneous, causing self‐deceleration of PBT crystallization until a limit composition that prevents further crystallization is reached in the melt. The maximum crystallinity achievable during isothermal crystallization decreases with Tc. The lowering of the temperature after termination of the isothermal crystallization allows to complete the crystal growth, but the final developed crystallinity still depends on Tc, being lower at higher Tcs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3148–3155, 2007  相似文献   

17.
Modulated temperature techniques allow to separate the reversing and non‐reversing contributions of material transitions. To investigate reversible crystallization and melting of isotactic polypropylene (iPP) at microstructural level, in this research, modulated temperature Fourier transform infrared (MTFTIR) and quasi‐isothermal FTIR (QIFTIR) analyses are used. By following the intensity variation of iPP regularity bands, associated with 31 helix structures of different lengths (n repeating units), MTFTIR evidences that, independently from helix length, a reversing coil–helix transition takes place few degrees below the non‐reversing crystallization onset. By comparing spectroscopic and differential scanning calorimetry experiments performed in quasi‐isothermal conditions, the reversing transition was found to be associated with the reversible melting‐crystallization phenomenon. Moreover, QIFTIR evidences that helices of different lengths contribute differently to the reversible transition: the helices composed of n = 10 and n = 12 are active into all the explored temperature range (30–130 °C) whereas the shortest (n = 6) and the longest (n > 15) helices contribute to reversibility at T > 100 °C. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 922–931  相似文献   

18.
The β‐cyclodextrin (β‐CD) and γ‐cyclodextrin (γ‐CD) inclusion complexes (ICs) with four kinds of polyolefin were prepared. The crystallization behavior of isotactic poly(1‐butene) (iPB‐1) blended with these CDs and ICs was investigated by differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray diffraction. The iPB‐1 blended with the ICs was found to exhibit higher crystallization temperature (TC), smaller spherulites, and faster crystallization rate than neat iPB‐1. These results indicate that the ICs can act as nucleating agent on the crystallization of iPB‐1 and induce the accelerated crystallization. The guest molecules of ICs play an important role in the nucleation effect of ICs on the crystallization of iPB‐1. ICs with polyolefin having higher TC as guest molecules have higher nucleation effect than the one with polyolefin having lower TC as guest molecules. And, the CDs and ICs induce different crystal form of iPB‐1. The crystal of iPB‐1 blended with CDs is defective, whereas the crystal of iPB‐1 blended with ICs is more perfect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 389–395, 2010  相似文献   

19.
Summary: Shear‐induced crystallization in a blend of isotactic poly(propylene) and poly(ethylene‐co‐octene) (iPP/PEOc) has been investigated by means of in‐situ optical microscopy and a shear hot stage under various thermal and shear histories. Cylindrites are observed after shear in the phase‐separated iPP/PEOc blends for the first time. The nuclei (shish) come from the orientation of the entangled network chains, and the relationship between the shear rate and the network relaxation time of the oriented iPP chains is a very important factor that dominates the formation of the cylindrites after liquid‐liquid phase separation. The cylindrites can grow through phase‐separated domains with proper shear rate and shear time. In addition, the number of spherulites increases with shear rate, which is consistent with the notion of fluctuation‐induced nucleation/crystallization.

Phase‐contrast optical micrograph of the iPP/PEOc = 50/50 (wt.‐%) sample sheared during cooling with shear rate of 10 s−1 and isothermally crystallized at 140 °C for 142 s after isothermal annealing at 170 °C for 420 min. The shear time is 180 s.  相似文献   


20.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHB‐HHx) and methoxy poly(ethylene glycol) (MPEG) blends were prepared using melt blending. The single glass transition temperature, Tg, between the Tgs of the two components and the negative χ value indicated that PHB‐HHx and MPEG formed miscible blends over the range of compositions studied. The Gordon–Taylor equation proved that there was an interaction between PHB‐HHx and MPEG in their blends. FTIR supported the presence of hydrogen bonding between the hydroxyl group of MPEG and the carbonyl group of PHB‐HHx. The spherulitic morphology and isothermal crystallization behavior of the miscible PHB‐HHx/MPEG blends were investigated at two crystallization temperatures (70 and 40 °C). At 70 °C, melting MPEG acted as a noncrystalline diluent that reduced the crystallization rate of the blends, while insoluble MPEG particles acted as a nucleating agent at 40 °C, enhancing the crystallization rate of the blends. However, no interspherulitic phase separation was observed at the two crystallization temperatures. The constant value of the Avrami exponent demonstrated that MPEG did not affect the three‐dimensional spherulitic growth mechanism of PHB‐HHx crystals in the blends, although the MPEG phase, such as the melting state or insoluble state, influenced the crystallization rate of the blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2852–2863, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号