首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Halogen free nitrogen-phosphorous flame retardants (PMOP) were prepared through reaction of melamine and polyphosphoric acid in the presence of flame retardant modifier CM with silicotungistic acid as a catalyst in aqueous solution. FT-IR, XRD, DSC and TGA techniques were used to characterize the reaction product PMOP. The obtained flame retardants were then used to prepare flame retardant (FR) polyamide 6 (PA6) composite reinforced with glass fiber (GF) and the factors affecting the flame retardancy of the material were also investigated. The FR GF reinforced PA6 composite and the obtained charred layers were analyzed by utilizing TGA, SEM, FT-IR and XRD. The properties of the charred layer were connected with the flame retardancy of the corresponding material to reveal the flame retarding mechanism of FR GF reinforced PA6 composite. The experimental results show that PMOP flame retardant consists of melamine polyphosphate, melamine phosphate and possible melamine pyrophosphate. The presence of CM was found to improve the flame retardancy of FR GF reinforced PA6 composite. It was experimentally found that PMOP flame retardant, which is comparatively stable in the range of processing temperatures of PA6, is particularly suitable for flame retarding PA6 reinforced with GF. With increasing the flame retardant content, the flame retardancy of the FR reinforced material is not improved so obviously. However, the increase in the GF content greatly improves the flame retardancy of the composite, because GF greatly increases the char yield of material, decreases the maximal thermal decomposition rate, promotes the formation of charred layer with (PNO)x structure and greatly increases the strength of the charred layer. The prepared FR GF reinforced PA6 composites have good comprehensive properties with flame retardancy 1.6 mm UL 94 V-0 level, tensile strength 76.8 MPa, Young's modulus 11.7 GPa, Izod notched impact strength 4.5 kJ/m2, flexural strength 98.0 MPa and flexural modulus 7.2 GPa, showing a better application prospect.  相似文献   

2.
《先进技术聚合物》2018,29(2):951-960
Polyamide 66 (PA66) containing the phosphorus linking pendent group with inherent flame retardancy property was prepared by condensation polymerization of hexamethylene diammonium adipate (AH salt) and 9,10‐dihydro‐10‐[2,3‐di(hydroxycarbonyl)propyl]‐10‐phosphaphenanthrene‐10‐oxide (DDP) as a co‐monomer. Prior to condensation polymerization, DDP was reacted with hexamethylene diamine (HMDA), which made DDP easier to react with AH salt. Then, the DDP‐HMDA was introduced into AH salt solution to prepare inherent flame retarded PA66 (FRPA66). Fourier transform infrared spectra, nuclear magnetic resonance spectra, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, tensile test, vertical burning test, limiting oxygen index test, cone calorimetry, and scanning electron microscopy were utilized to investigate the properties of FRPA66. Experimental results indicated that the bulky pendent phosphorus group tended to destroy the structure regularity of FRPA66 and the molecular weight, crystallinity, and thermal stability reduced. The tensile strength of FRPA66 containing 5 wt% of DDP was 58.44 MPa, and it can achieve a V‐0 rating according to the vertical burning test with the limiting oxygen index value of 33.2%. This indicated that the inherent flame retarded PA66 expanded the application of PA66 materials.  相似文献   

3.
<正>The effect of ammonium sulfamate(AS) content on the flame retardancy of polyamide 6(PA6) was studied.It is found that the limiting oxygen index(LOI) of PA6 increases with the increase of AS content and the flame retardancy of PA6 is significantly improved.The morphology of the residues after combustion was examined by means of scanning electron microscopy(SEM).SEM results show that AS facilitates the formation of the intumescent char layer with honeycomb-like structure,which inhibits the transfer of heat and mass,and thus improves the flame retardancy of PA6.The thermal degradation of AS flame retarded PA6 was studied by thermogravimetric analysis(TGA).The Kissinger method was applied to estimate the activation energy(E_a) of the degradation.The activation energy of the thermal degradation of PA6 decreases by adding AS,indicating that AS can promote the degradation of PA6.  相似文献   

4.
Herein, a bridged 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) derivative (PN‐DOPO) in combination with organ‐montmorillonite (OMMT) was used to improve the flame retardancy and mechanical properties of glass‐fiber‐reinforced polyamide 6 T (GFPA6T). The flame retardancy and thermal stabilities of the cured GFPA6T composites were investigated using limiting oxygen index, vertical burning (UL‐94) test, cone calorimeter test, and thermogravimetric analysis (TGA). The morphological analysis and chemical composition of the char residues after cone calorimeter tests were characterized via scanning electron microscopy and energy dispersive spectrometry. The results indicate that 2 wt% OMMT combined with 13 wt% PN‐DOPO in GFPA6T achieved a V‐0 rating in UL‐94 test. The peak heat release rate and total smoke release remarkably decreased with the incorporation of OMMT as compared to those of GFPA6T/15 wt% PN‐DOPO. The TGA results show that the thermal stability and residual mass of the samples effectively increased with the increase in OMMT content. The morphological analysis and composition structure of the residues demonstrate that a small amount of OMMT could help form a more thermally stable and compact char layer during combustion. Also, with the incorporation of OMMT, the layers consisted of more carbon‐silicon and aluminum phosphate char in the condensed phase. Furthermore, GFPA6T/PN‐DOPO/OMMT composites exhibited excellent mechanical properties in terms of flexural modulus, flexural strength, and impact strength than the GFPA6T/PN‐DOPO system. The combination of PN‐DOPO and OMMT has improved the flame retardancy and smoke suppression of GFPA6T without compromising the mechanical properties.  相似文献   

5.
Flame‐retardant polyamide 6 (PA6) was prepared by an inorganic‐organic composite (MCN or MgO/g‐C3N4) synthesized by incorporating magnesium oxide (MgO) combined with graphitic carbon nitride (g‐C3N4). As compared to g‐C3N4, MCN possessed a laminate structure, more holes, and a larger specific surface area. The addition of MCN could effectively improve the flame retardancy and mechanical properties of PA6 due to its better compatibility and dispersion in the PA6 matrix. When the addition of MCN was 20 wt%, the vertical combustion performance of the PA6/MCN sample reached flammability rating V‐0 (UL‐94) and the limiting oxygen index (LOI) was up to 32.1%. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) revealed that the introduction of MCN efficiently enhanced thermal stability of PA6. The morphologies of the char residue observed by scanning electron microscopy (SEM) verified that MCN promoted the formation of sufficient, compact, and homogeneous char layers on the composite's surface during burning. Thus led to increase the char layer strength and improve the flame retardancy of PA6. The thermogravimetric analysis/infrared (TG‐IR) revealed the gas‐phase retardancy mechanism of MCN. Compared with PA6/g‐C3N4, PA6/MCN showed better mechanical properties in terms of flexural strength and tensile strength.  相似文献   

6.
In this paper, thermoplastic phenol formaldehyde (PF) grafted cyclic neopentyl phosphate (PFCP) was synthesized by using PF and 2,2‐dimethyl‐1,3‐propanediol phosphoryl chloride. It was characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR). Compared to PF, PFCP shows improved thermal and thermoxidative stability and allows itself to be used in polyamide 6 (PA6). A micro‐intumescent flame retardant system was constructed by using cyclic neopentyl phosphate as acid source, PF as charring agent and PA6 whose decomposition products work as blowing agent. The results showed that PA6/PFCP composite is classified the UL‐94 V‐0 rating and get a LOI value of 35.5% at 25% loading of PFCP. SEM results showed that the outside of char residues is continuous and dense, but the inside is micro‐intumescent and porous. XPS analysis of char revealed that most of phosphorus remained in the char layer. All the results suggest that the mode of flame retardant's action for PA6/PFCP composites is shifted from melting away to charring protection with the content of PFCP increasing. The coherent char generated by the decomposition of PFCP contributes most to flame retardancy of PA6. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
《先进技术聚合物》2018,29(3):1068-1077
The effect of 1,3,5‐triglycidyl isocyanurate (TGIC) as a synergistic agent on the fire retardancy, thermal, and mechanical properties for polyamide 6/aluminium diethylphosphinate (PA6/AlPi) composites were investigated in detail by limiting oxygen index; vertical burning (UL‐94); cone calorimeter; thermal gravimetric analysis; rheological measurements; and the tests of tensile, flexural, and Izod impact strength. The morphologies and chemical compositions of the char residue were investigated by scanning electron microscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectra. The results demonstrated that AlPi and TGIC exerted an evident synergistic effect for flame retardant PA6 matrix, and the PA6/AlPi/TGIC composites with the thickness of 1.6 mm successfully passed UL‐94 V‐0 rating with the limiting oxygen index value of 30.8% when the total loading amount of AlPi/TGIC with the mass fraction of 97:3 was 11 wt%. However, the samples failed to pass the UL‐94 vertical burning tests when AlPi alone is used to flame retardant PA6 matrix with the same loading amount. The thermal gravimetric analysis data revealed that the introduction of TGIC promoted the char residue formation at high temperature. The rheological measurement demonstrated that the incorporation of TGIC improved the storage modulus, loss modulus, and complex viscosity of PA6/AlPi/TGIC composites comparing with that of neat PA6 and PA6/AlPi composites due to the coupling reaction between TGIC and the terminal groups of PA6 matrix. The morphological structures of char residues demonstrated that TGIC benefited to the formation of more homogenous and integrated char layer with no defects and holes on the surface comparing with that of PA6/AlPi composites during combustion. The higher melt viscosity of composites and the integrated and sealed char layer effectively inhibited the volatilization of flammable gas into the combustion zone and then led to the reduction of the heat release. The results of mechanical properties revealed that the incorporation of TGIC enhanced the mechanical properties for PA6/AlPi/TGIC composites comparing with that of PA6/AlPi composites with the same loading amount of flame retardant caused by the chain extension effect of TGIC. As a result, the flame retardancy and mechanical properties of PA6/AlPi composites simultaneously enhanced due to the introduction of TGIC.  相似文献   

8.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Three different boron containing materials, zinc borate (ZnB), borophosphate (BPO4), and boron and silicon containing oligomer (BSi), were used to improve the flame retardancy of melamine cyanurate (MC) in a polyamide‐6 (PA‐6) matrix. The combustion and thermal degradation characteristics were investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis‐Fourier transform infrared spectroscopy (TGA‐FTIR), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM). All the three boron compounds showed no synergistic effect with MC, and only BPO4 at high loadings showed comparable LOI values by increasing the dripping rate. For ZnB and BSi glassy film and char formation decreases the dripping rate and sublimation of melamine and give rise to low LOI. According to TGA‐FTIR results, addition of boron compounds does not alter the gaseous product distribution of both MC and PA‐6. The addition of boron compounds affects flame retardancy through physical means. It was noted from the TGA data that boron compounds reduced the decomposition temperature of both MC and PA‐6, also affecting the flame retardancy negatively by premature degradation of MC at low temperatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A novel microencapsulated red phosphorus (RP) was prepared through the molecular self-assembly of melamine cyanurate (MCA). Compared with the conventional encapsulated RP, MCA-encapsulated RP (MERP) shows simpler and more environment-friendly preparation process higher thermal stability and lower moisture absorption. With MERP filled in unreinforced polyamide 66 (PA66) and glass fiber (GF) reinforced PA66, flame retardant materials with satisfactory flame retardancy and mechanical performance can be obtained. The influence of the MCA/RP ratio on the flame retardancy as well as the condensed phase of MERP flame retardant PA66 was investigated to reveal the nitrogen-phosphorus (N-P) synergistic flame retarding effects between MCA and RP.  相似文献   

11.
Flame retardant nanocomposites have attracted many research efforts because they combine the advantages of a conventional flame retardant polymer with that of polymer nanocomposite. However the properties obtained depend on the dispersion of the nanoparticles. In this study, three types of polymer flame retarded nanocomposites based on different matrices (polypropylene (PP), polybutadiene terephtalate (PBT) and polyamide 6 (PA6)) have been prepared by extrusion. In order to investigate the dispersion of nanoparticles in the polymer containing flame retardant, conventional methods used to characterise the morphology of composites have been applied to FR composites containing nanoclays. XRD, TEM and melt rheology give useful information to describe the dispersion of the nanofiller in the flame retarded nanocomposite. In the PA6-OP1311 (phosphorus based flame retardant) materials, the clay is well dispersed unlike in PBT and PP materials where microcomposites are obtained with some intercalation. The poor dispersion is also highlighted by NMR measurements but the presence of flame retardant particles interferes in the quantitative evaluation of nanoclay dispersion and underestimations are made.  相似文献   

12.
陈力  王玉忠 《高分子科学》2012,30(2):297-307
A novel encapsulated flame retardant containing phosphorus-nitrogen(MSMM-Al-P) was prepared by encapsulating with polyamide 66(PA66-MSMM-Al-P) for the flame retardation of polyamide 6(PA6).The structure and thermal properties of PA66-MSMM-Al-P were characterized by Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy and thermogravimetric analysis.The flammability of PA6 containing flame retardants(MSMM-Al -P and PA66-MSMM-Al-P) was investigated by the limiting oxygen index test,vertical burning test and cone calorimeter. The flame retardancy and cone calorimetric analyses suggested a synergistic effect between PA66 and MSMM-Al-P in the flame-retardant PA6.Thermal stability of the flame-retardant PA6 was also investigated.  相似文献   

13.
A novel intumescent flame retardant, containing ammonium polyphosphate (APP), and poly(hexamethylene terephthalamide) (PA6T), was prepared for flame retarding polypropylene (PP). The flame retardation of the PP composites was characterized by limiting oxygen index (LOI). The thermal degradation of the composites was investigated by means of thermogravimetric analysis (TG) and TG coupled with Fourier transform infrared spectroscopy (TG-FTIR). The morphology of the char obtained after combustion of the composites was studied by scanning electron microscopy. It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA6T/APP/PP (5/25/70) system increasing from 17.5 to 32. Meanwhile, the TG and TG-FTIR work indicated that PA6T could be effective as a carbonization agent and there was a synergistic reaction between PA6T and APP, which effectively promoted the char formation of the PP composites. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame retarded PP composites.  相似文献   

14.
A phosphorus and silicon containing liquid monomer (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide–vinyltrimethoxysilane (DOPO–VTS)) was synthesized by the reaction between DOPO and VTS. DOPO–VTS and methacryloxypropyltrimethoxylsilane were introduced into unsaturated polyester resin to prepare flame retardant UPR/SiO2 (FR‐UPR/SiO2) hybrid materials by sol–gel method and curing process. DOPO–VTS contributes excellent flame retardancy to UPR matrix, which was confirmed by the limiting oxygen index and microscale combustion calorimeter results. The thermogravimetric analysis (TGA) results indicate that the FR‐UPR/SiO2 hybrid materials possess higher thermal stability and residual char yields than those of pure UPR at high temperature region. The thermal degradation of materials was investigated by TGA/infrared spectrometry (TG‐IR) and real‐time infrared spectrometry (RT‐IR), providing insight into the thermal degradation mechanism. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) were used to explore the morphologies and chemical components of the residual char. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper extends the work of Lewin et al., which showed that high levels of flame retardancy could be conferred on polyamide 6 (PA6) in the presence of small concentrations of ammonium sulphamate (AS) and dipentaerythritol (DP). PA6 samples were compounded with similarly low concentrations (2.5%w/w AS and 1%w/w DP) with or without nanoclays and fumed silica present at 1 and 2%w/w levels. Compounded samples were characterized by X‐ray diffraction, thermal analysis (differential thermal analysis/thermogravimetric analysis) and Fourier transform infrared. Flammability properties were measured by UL‐94, limiting oxygen index (LOI) and cone calorimetry test methods. All PA6 blended samples with or without nanoparticles were found to be V‐2 rated which differed from the results reported by Lewin et al. for similar samples where V‐0 ratings were obtained for clay‐free samples. LOI increases promoted by the inclusion of AS and DP alone were slightly reduced following the addition of all nanoparticles with the functionalized clays showing the largest effect. Introduction of silica, however, had the smallest effect in reducing LOI. Cone calorimetric results showed that while the presence of AS and DP raise peak heat release rate values with respect to PA6, addition of nanoparticles reduced values to below that for pure PA6. These reductions are dependent on nanoparticle concentration although differences between them, within experimental error, are very similar. While smoke generation is little affected by addition of AS and DP, the presence of nanoparticles promotes a slight increase. Results were interpreted in terms of previously published mechanisms for PA6‐AS‐DP thermal degradation and nanoparticle‐polymer interactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A series of novel addition products (phosphorus content: 0.5, 1, 2, and 3 wt %) were synthesized from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and 4,4′‐bismaleimidodiphenylmethane (BMI). NMR and IR were used to confirm the structures of the synthetic bismaleimides. Dynamic mechanical analysis scans showed the glass‐transition temperatures of these cured BMIs decreased with phosphorus content. Thermal gravimetric analysis heating scans indicated that they had high thermal stability. Limiting oxygen index measurements implied that the flame retardancy was improved by the incorporation of DOPO. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2260–2268, 2000  相似文献   

17.
A novel phosphorus‐containing trifunctional novolac (dopotriol) was synthesized through the addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and rosolic acid. The structure of dopotriol was confirmed with NMR spectroscopy and elemental analyses. The dopotriol was blended with phenol novolac in the ratios of 10/0, 8/2, 6/4, 4/6, 2/8, and 0/10 to serve as a curing agent for diglycidyl ether of bisphenol A. Thermal properties, such as the glass‐transition temperature, thermal decomposition temperature, and flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The activity and activation energy of curing were studied with the methods of Kissinger and Ozawa by dynamic differential scanning calorimetry scans. The glass‐transition temperatures of the cured epoxy resins were 138–159 °C, increasing with the phosphorus content. This is rarely seen in the literature after the addition of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.87%. Similar dielectric properties and moisture absorption were observed for these phosphorus‐containing epoxy resins, and this implied that the addition of phosphorus to epoxy did not affect the dielectric properties and moisture absorption. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2862–2873, 2005  相似文献   

18.
A novel intumescent gel‐silica/ammonium polyphosphate core‐shell flame retardant (MCAPP), which contains silicon, phosphorus, and nitrogen, has been prepared by in situ polymerization. The structure of MCAPP was characterized by Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS). The properties of MCAPP were investigated by water solubility, hydrophilicity, and morphological determination. The flame retardancy and thermal stability of polyurethane (PU) composite with MCAPP were evaluated by limiting oxygen index (LOI), UL‐94 test, cone calorimetry, and thermogravimetric analysis (TGA). The results showed that MCAPP could decrease the heat release rate (HRR) and increase the thermal stability of PU materials greatly. Finally, water‐resistant properties of PU/FR composites were also studied. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号