首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
采用水热法合成球形钛酸铋复合氧化物光催化剂,利用SEM、XRD和UV-Vis DRS等表征手段对复合氧化物的晶体结构、微观形貌和光学性能进行了分析,结果表明,制备的钛酸铋复合氧化物为10 nm的球形颗粒,具有良好的晶型结构,禁带宽度为2.7 nm,有较好的可见光吸收能力。以亚甲基蓝、甲基橙及酸性品红为目标污染物,研究了复合氧化物在可见光下的光催化降解有机污染物的性能,并对光催化降解机理进行了探讨。结果表明,在可见光照射下,该复合氧化物对酸性品红降解效果明显优于亚甲基蓝和甲基橙,光照150 min下,降解率可达91%。  相似文献   

2.
采用水热法合成球形钛酸铋复合氧化物光催化剂,利用SEM、XRD和UV-Vis DRS等表征手段对复合氧化物的晶体结构、微观形貌和光学性能进行了分析,结果表明,制备的钛酸铋复合氧化物为10 nm的球形颗粒,具有良好的晶型结构,禁带宽度为2.7 nm,有较好的可见光吸收能力。以亚甲基蓝、甲基橙及酸性品红为目标污染物,研究了复合氧化物在可见光下的光催化降解有机污染物的性能,并对光催化降解机理进行了探讨。结果表明,在可见光照射下,该复合氧化物对酸性品红降解效果明显优于亚甲基蓝和甲基橙,光照150 min下,降解率可达91%。  相似文献   

3.
Plasmonic Ag/AgCl‐modified bismuth subcarbonate (Bi2O2CO3) composites were prepared by a multistep process with hydrothermal, deposition, and photoreduction in the absence of organic capping agents. The properties of the obtained Ag/AgCl/Bi2O2CO3 samples were characterized using X‐ray diffraction, field emission scanning electron microscopy and X‐ray photoelectron, UV–visible diffuse reflectance, and photoluminescence spectroscopies. The results reveal that Ag/AgCl nanoparticles are dispersed on the Bi2O2CO3 surface to achieve plasmonic Ag/AgCl/Bi2O2CO3. The Ag/AgCl/Bi2O2CO3 nanocomposites show improved rhodamine B (RhB) adsorption capacity and photocatalytic activity compared with pure Bi2O2CO3 and Ag/AgCl. In addition, the Ag/AgCl/Bi2O2CO3 composite with 20 wt% Ag/AgCl exhibits the highest photocatalytic activity and remains stable for the photodegradation of RhB under visible light. The enhanced photocatalytic activity of Ag/AgCl/Bi2O2CO3 may be attributed to the surface plasmon resonance effect of in situ generated Ag nanoparticles and synergistic effect of Ag/AgCl and Bi2O2CO3, which increase the separation efficiency of photogenerated electron–hole pairs under visible light irradiation.  相似文献   

4.
We present the controlled solution-phase synthesis of several sheet- or rod-like bismuth oxides, BiOCl, Bi12O17Cl2, α-Bi2O3 and (BiO)2CO3, by adjusting growth parameters such as reaction temperature, mole ratios of reactants, and the base used. BiOCl, Bi12O17Cl2, and α-Bi2O3 could be prepared from BiCl3 and NaOH, whereas (BiO)2CO3 was prepared from BiCl3 and urea. BiOCl and Bi12O17Cl2 could also be prepared from BiCl3 and ammonia. The α-Bi2O3 sample exhibited strong emission at room temperature.  相似文献   

5.
In this study, the characterization and photocatalytic activity of Bi2WO6/Bi2O3 under visible‐light irradiation was investigated in detail. The results suggested that Bi2WO6/Bi2O3 can be synthesized by a facile one‐pot hydrothermal route using a super big 200 mL Teflon‐lined autoclave with optimal sodium oleate/Bi molar ratio of 1.25. Through the characterization of Bi2WO6/Bi2O3 by X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier transform infrared, UV‐vis diffuse reflectance spectra and Photoluminescence spectra, it was found that the as‐prepared composite possessed smaller crystallite size and higher visible‐light responsive than the pure Bi2WO6. Moreover, it was expected that the as‐prepared composites exhibited enhanced photocatalytic activity for the degradation of Rhodamine B under visible‐light irradiation, which could be ascribed to their improved light absorption property and the reduced recombination of the photogenerated electrons and holes during the photocatalytic reaction. In general, this study could provide a principle method to synthesize Bi2WO6/Bi2O3 with enhanced photocatalytic activity by one‐step hydrothermal synthesis route for environmental purification.  相似文献   

6.
Ag/Au/Fe3O4/graphene composites prepared by a hydrothermal method demonstrated excellent activation of H2O2 and were used to degrade methylene blue (MB) in solution in the presence of organic acids and inorganic ions under light and ultrasound irradiation. The physicochemical properties of the obtained composites were characterized using various methods. The results showed that the composites exhibited excellent magnetic properties, crystallinity, and stability. The results of catalysis experiments revealed that the removal efficiency of MB increased when Ag and Au were both incorporated into the Fe3O4/graphene/H2O2 system compared with the removal efficiency achieved with separate Ag-Fe3O4/graphene/H2O2 and Au-Fe3O4/graphene/H2O2 systems, indicating a substantial synergistic interaction between the two metallic nanoparticles and the Fe3O4/graphene/H2O2 systems. The presence of an organic acid accelerated degradation of the MB/H2O2 system, whereas almost all of the investigated anions inhibited the degradation of MB; their inhibition effects followed the order CO32? > NO3? > Cl? > F? > H2PO4? > SO42? > I?. Cations of Na+, K+, Ca2+, and Mg2+ also suppressed MB degradation, likely because of the influence of Cl? coexisting in the solutions.  相似文献   

7.
In this paper, Bi2O3 and rare earth (La, Ce)‐doped Bi2O3 visible‐light‐driven photocatalysts were prepared in a Triton X‐100/n‐hexanol/cyclohexane/water reverse microemulsion. The resulting materials were characterized by X‐ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area, photoluminescence spectra (PLS) and UV–Vis diffuse reflectance spectroscopy. The XRD patterns of the as‐prepared catalysts calcined at 500°C exhibited only the characteristic peaks of monoclinic α‐Bi2O3. PLS analysis implied that the separation efficiency for electron‐hole has been enhanced when Bi2O3 was doped with rare earth. UV–Vis diffuse reflectance spectroscopy measurements presented an extension of light absorption into the visible region. The photocatalytic activity of the samples was evaluated by degradation of methyl orange (MO) and 2,4‐dichlorophenol (2,4‐DCP). The results displayed that the photocatalytic activity of rare earth‐doped Bi2O3 was higher than that of dopant‐free Bi2O3. The optimal dopant amount of La or Ce was 1.0 mol%. And the mechanisms of influence on the photocatalytic activity of the catalysts were discussed.  相似文献   

8.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO_4/Bi_2O_3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-可见漫反射(UV-Vis DRS)等方法对样品进行表征。可见光下,BiVO_4/Bi_2O_3复合物的光催化降解罗丹明B性能及光电流响应均优于纯BiVO_4。这是由于BiVO_4/Bi_2O_3复合材料形成了异质结构,有效抑制了光生电子与空穴的复合效率。  相似文献   

9.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO4/Bi2O3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-射(UV-Vis DRS)等方法征。可见光下,BiVO4/Bi2O3复合物的光催化降解丹明B性能及光电优于纯BiVO4。BiVO4/Bi2O3复合材料形成了异质结构,有效抑制了光电子与空穴的复合效率。  相似文献   

10.
通过程序升温水热法制备了层级纳米花状结构Bi_2O_3/(BiO)_2CO_3复合材料(简称BO/BCO)。采用X射线衍射(XRD)、紫外-可见漫反射吸收光谱(UV-Vis/DRS)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附-脱附测定等方法对上述合成材料的晶型结构、组成、光吸收性质、形貌和表面物理化学性质进行了表征。结果表明,该复合材料中(BiO)_2CO_3的晶型为四方相,Bi_2O_3的晶型为单斜相,复合后的材料同时具有两者晶型结构。并且,合成时随着OH-的引入与反应时间的增加,复合材料中(BiO)_2CO_3的特征衍射峰强度逐渐降低,Bi_2O_3的特征衍射峰强度逐渐增加,证明了Bi_2O_3在样品中所占比例的增加。从UV-Vis/DRS吸收光谱分析结果显示,与单体(BiO)_2CO_3和单体Bi_2O_3相比,合成的BO/BCO复合材料的吸收边带发生偏移,且Bi_2O_3的引入有效增加其可见光区吸收。同时,样品由片状(BiO)_2CO_3生长为层级纳米花环状结构的BO/BCO-0.5,而层级结构的形成导致BO/BCO-0.5的带隙能变窄,且对于光电子的反射与散射发生改变,从而有利于光生电荷的转移与光的吸收效率。另外,以罗丹明B为模型分子,通过不同光源照射下的光催化活性实验,循环实验以及捕获实验对复合材料BO/BCO的光催化活性进行了研究。结果表明,与其他体系(单体Bi_2O_3和P25)相比,BO/BCO-0.5活性有明显提高,并且在多次循环实验后依然保持良好的稳定性。此外,根据捕获实验结果推测了BO/BCO复合材料可能的光催化反应机理。  相似文献   

11.
通过程序升温水热法制备了层级纳米花状结构Bi2O3/(BiO)2CO3复合材料(简称BO/BCO)。采用X射线衍射(XRD)、紫外-可见漫反射吸收光谱(UV-Vis/DRS)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附-脱附测定等方法对上述合成材料的晶型结构、组成、光吸收性质、形貌和表面物理化学性质进行了表征。结果表明,该复合材料中(BiO)2CO3的晶型为四方相,Bi2O3的晶型为单斜相,复合后的材料同时具有两者晶型结构。并且,合成时随着OH-的引入与反应时间的增加,复合材料中(BiO)2CO3的特征衍射峰强度逐渐降低,Bi2O3的特征衍射峰强度逐渐增加,证明了Bi2O3在样品中所占比例的增加。从UV-Vis/DRS吸收光谱分析结果显示,与单体(BiO)2CO3和单体Bi2O3相比,合成的BO/BCO复合材料的吸收边带发生偏移,且Bi2O3的引入有效增加其可见光区吸收。同时,样品由片状(BiO)2CO3生长为层级纳米花环状结构的BO/BCO-0.5,而层级结构的形成导致BO/BCO-0.5的带隙能变窄,且对于光电子的反射与散射发生改变,从而有利于光生电荷的转移与光的吸收效率。另外,以罗丹明B为模型分子,通过不同光源照射下的光催化活性实验,循环实验以及捕获实验对复合材料BO/BCO的光催化活性进行了研究。结果表明,与其他体系(单体Bi2O3和P25)相比,BO/BCO-0.5活性有明显提高,并且在多次循环实验后依然保持良好的稳定性。为此,根据捕获实验结果推测了BO/BCO复合材料可能的光催化反应机理。  相似文献   

12.
The rGO/BiOBr/Bi4O5Br2 nanocomposite powders with stacked nanosheets were fabricated by one‐step solvothermal method. The components, morphologies, optical properties and the separate of photo‐induced carriers were explored by XRD, FT‐IR, SEM, TEM, UV/Vis DRS and PL experiments. The results manifest that the reduced graphene oxide (rGO) plays a vital part in transmitting and evacuating electrons, which promotes the separate efficiency of photo‐induced carriers and enhances the photodegradation efficiency of ciprofloxacin. The influences of synthesis conditions were also explored, which cover rGO content, solvent thermal reaction pH, temperature and time. In addition, a feasible photocatalytic mechanism over ciprofloxacin photodegradation under visible light irradiation was proposed.  相似文献   

13.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

14.
Nitrogen doped RGO- FeWO4/Fe3O4 (NRGO-FeWO4/Fe3O4) ternary nanocomposite was synthesized by rapid single step microwave irradiation approach using iron acetate, ammonium tungstate and graphene oxide as precursors. The synthesized materials were thoroughly characterized by diffraction, microscopic and spectroscopic techniques. The materials were tested for their catalytic efficiency in photo degradation of Methylene Blue (MB) dye and in reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). MB was mineralized within 100 minutes of visible light irradiation time in the presence of the ternary composite, apart from excellent stability and efficiency even after 10 consecutive cycles. The composite also had the capacity to convert 4-NP into 4-AP within 45 seconds and showed very good catalytic activity even after 20 cycles. The results revealed that ternary composite has way more efficiency than the component materials and can act as a promising catalyst for various environmental and engineering applications.  相似文献   

15.
经由溶剂热反应、光辅助还原过程制备Bi/Bi VO_4Bi_4V_2O_(11)纳米复合光催化材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、N_2吸附-脱附等温线和光致发光(PL)等手段对该复合物进行表征。实验结果表明当金属Bi与BiVO_4Bi_4V_2O_(11)的质量比值为0.8,可见光照射30 min时,Bi/BiVO_4Bi_4V_2O_(11)复合催化剂对罗丹明B(RhB)的降解率可达95.6%。此外,Bi/BiVO_4Bi_4V_2O_(11)对四环素(TC)的降解也表现出增强的光催化性能。Bi/BiVO_4Bi_4V_2O_(11)复合材料提升的光催化性能可能归因于金属Bi的表面等离子体共振(SPR)效应、拓宽的可见光吸收范围和增大的比表面积。此外,提出了复合光催化剂可能的光催化机理。  相似文献   

16.
Overall water photo-splitting is a prospective ideal pathway to produce ultra-clean H_2 energy by semiconductors.However,the band structure of many semiconductors cannot satisfy the requirement of H_2 and O_2 production at the same time.Herein,we illustrate that carbon dots(CDs)/Bi_2 WO_6 photocatalyst with compensatory photo-electronic effect has enhanced activity for overall water photo-splitting without any sacrificial agent.In this complex photocatalytic system,the photo-potential provided by CDs makes the CDs/Bi_2 WO6(C-BWO) composite could satisfy the band structure conditions for overall water photo-splitting.The C-BWO composite(3 wt% CDs content) exhibits optimized hydrogen evolution(oxygen evolution) of 0.28 μmol/h(0.12 μmol/h) with an approximate 2:1(H_2:O_2) stoichiometry at normal pressure.We further employed the in-situ transient photovoltage(TPV) technique to study the photoelectron extraction and the interface charge transfer kinetics of this composite catalyst.  相似文献   

17.
通过水热法制备出一系列Z型异质结Cu2O/Bi2MoO6新型光催化剂。采用扫描电子显微镜、粉末X射线衍射、红外光谱、紫外可见吸收光谱等表征手段研究了催化剂的形貌、结构性质和光电化学性质,并以四环素(TC)为降解目标污染物,进一步探究了其催化效率。实验结果表明,Cu2O的加入提高了复合催化剂的光催化性能,其中20% Cu2O/Bi2MoO6复合催化剂(Cu2O和Bi2MoO6的质量比为20%)降解效果最好,100 min内可降解95%的TC。Cu2O与Bi2MoO6之间的协同作用使其可以吸收更多的可见光,所构建的Z型异质结改变了电子转移途径,提高了电子与空穴的分离效率,光催化活性显著提高。通过自由基捕获实验和能带结构,分析了Z型异质结Cu2O/Bi2MoO6复合催化剂光催化降解TC可能的机理。  相似文献   

18.
采用静电纺丝技术制备的TiO2纤维作为模板和反应物,通过原位水热合成了具有异质结构的Bi2Ti2O7/TiO2复合纤维。利用X射线衍射(XRD)、扫描电镜(SEM)、能量散射光谱(EDS)、高分辨透射电镜(HRTEM)和紫外可见吸收光谱(UV-Vis)等分析测试手段对样品的结构和形貌进行表征。以罗丹明B为模拟有机污染物进行光催化降解实验。结果表明:花状Bi2Ti2O7纳米结构均匀地生长在TiO2纤维上,制备了Bi2Ti2O7与TiO2相复合的光催化材料,其光谱响应范围拓宽至可见光区,与纯TiO2纤维相比可见光催化活性显著提高,且易于分离、回收和循环使用。初步探讨了Bi2Ti2O7/TiO2异质结的生长机制和光催化活性提高机理。  相似文献   

19.
New polyoxometalate (POM)/polymer hybrid composites were prepared by photopolymerization under mild conditions for suitable photocatalytic processes. Polyoxometalates were incorporated in special photosensitive resins, which were photopolymerized under visible light to obtain new materials with photocatalytic activity for dye removal. The synthesized composites were characterized by real‐time FT‐IR, and the photocatalytic ability was investigated on Eosin‐Y removal using photolysis under near UV irradiation. Interestingly, the polyoxometalates keep their photocatalytic properties, while incorporated into the polymeric matrix since very high conversion rates of Eosin‐Y were achieved. Indeed, degradation efficiencies of about 98% and 93% were registered when using H3PMo12O40/polymer and 94% for SiMo12O40(IPh2)4/polymer composites, respectively. These first results reported in this article show that the new synthesized POM/polymer composites could be considered as promising materials for green and more suitable organic dye removal from aqueous solutions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1538–1549  相似文献   

20.
采用简单的两步水热法制备出了锆基金属有机骨架和钼酸铋的复合材料MOF-808/Bi2MoO6。通过X射线粉末衍射、傅里叶红外光谱、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、紫外可见漫反射光谱、N2吸附-脱附测试和电化学测试对所制备材料的组成、微观结构、光学性质以及光生载流子的复合效率进行了分析。与纯Bi2MoO6和MOF-808相比,0.5%-MOF-808/Bi2MoO6复合材料展示出了较高的光催化活性,在可见光照射120 min时对抗生素环丙沙星(CIP)的降解率达89.7%。通过自由基捕获实验,证明了·O2-是主要活性物种,基于此我们提出了可能的光催化降解机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号