首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract— The fluorescent probe Prodan (6-propionyl-2-dimethyl-aminonaphthalene) binds with high affinity to human serum albumin (HSA). The spectral characteristics of the Prodan bound to the protein are very different from the free Prodan in solution. These differences allowed the spectra to be deconvoluted into log-normal bands in order to quantify the bound and unbound ligand and to calculate the binding constant at different temperatures. From such temperature dependence, we found the binding to be exothermic with a van't Hoff enthalpy of -22.8 kJ mol-1. Thermodynamic analysis suggests that the in teraction may be mainly caused by hydrophobic forces and electrostatic interactions. The above analysis of the spectra and the measures of the fluorescence polarization during the successive presence of six specific drugs suggest that the Prodan binding site corresponds with the warfarin binding site on HSA, whereas under the present experimental conditions the other characteristic binding sites of HSA were not affected. Thus, this fluorescent probe provides a rapid and simple means for the characterization of a specific binding site on HSA and also for detecting potential or nonspecific drug-protein interactions.  相似文献   

2.
Wang F  Huang L  Na N  He D  Sun D  Ouyang J 《The Analyst》2012,137(10):2367-2373
In this paper, a simple and sensitive small-molecule fluorescent probe, 2,5-dihydroxy-4'-dimethylaminochalcone (DHDMAC), was designed and synthesized for the detection of human serum proteins via hydrophobic interactions after polyacrylamide gel electrophoresis (PAGE). This probe produced lower fluorescence emission in the absence of proteins, and the emission intensity was significantly increased after the interaction with serum proteins. To demonstrate the imaging performance of this probe as a fluorescent dye, a series of experiments was conducted that included sensitivity comparison and 2D-PAGE. The results indicated that the sensitivity of DHDMAC staining is comparable to that of the most widely used fluorescent dye, SYPRO Ruby, and more protein spots (including thyroxine-binding globulin, angiotensinogen, afamin, zinc-α-2-glycoprotein and α-1-antichymotrypsin) were detected after 2D-PAGE. Therefore, DHDMAC is a good protein reporter due to its fast staining procedure, low detection limits and high resolution.  相似文献   

3.
The applicability of single-channel and merging-zones flow injection systems with fluorimetric detection to the study of drug-protein binding interactions has been demonstrated. A study of the binding of the fluorescent probe 8-anilinonaphthalene-1-sulphonic acid (ANS) to human serum albumin by means of such systems gave results identical to those obtained by a static procedure, but the flow injection procedure was much more convenient. The flow injection methods were also used in pure albumin solution and in diluted serum to study the displacement of ANS by acidic drugs. The flow injection procedures were extended to investigate the binding of basic drugs to α1-acid glycoprotein. A recent fluorescence probe derived from propanolol permitted calculations of the number and strength of the binding sites on this protein for propanolol and other drugs.  相似文献   

4.
Two carboxylate-substituted, fluorescent (Phi = 0.08), water-soluble poly(p-phenyleneethynylene)s (PPE) and a water-soluble model compound were exposed to a series of proteins and bovine serum. While the anionic PPEs do not have any specific binding sites, they form stable complexes with histone, lysozyme, myoglobin, and hemoglobin. The complex formation was evidenced by fluorescence quenching. Bovine serum albumin does not quench the fluorescence of the PPEs but enhances it, probably due to its surfactant character. These results imply that the use of charged conjugated polymers as biosensors, while an attractive proposition, has to take into account strong nonspecific interactions between conjugated polymers and the host of proteins that is found in cells and complex biological fluids.  相似文献   

5.
Alexa Fluor 647 is a widely used fluorescent probe for cell bioimaging and super‐resolution microscopy. Herein, the reversible fluorescence switching of Alexa Fluor 647 conjugated to bovine serum albumin (BSA) and adsorbed onto indium tin oxide (ITO) electrodes under electrochemical potential control at the level of single protein molecules is reported. The modulation of the fluorescence as a function of potential was observed using total internal reflectance fluorescence (TIRF) microscopy. The fluorescence intensity of the Alexa Fluor 647 decreased, or reached background levels, at reducing potentials but returned to normal levels at oxidizing potentials. These electrochemically induced changes in fluorescence were sensitive to pH despite that BSA‐Alexa Fluor 647 fluorescence without applied potential is insensitive to pH between values of 4–10. The observed pH dependence indicated the involvement of electron and proton transfer in the fluorescence switching mechanism.  相似文献   

6.
The conformations of bovine serum albumin (USA) and egg albumin (EA) in solution and their conformation changes under different conditions were studied by using three-dimensional fluorescence spectrometry (TDFS) such as three-dimensional fluorescence (TDF) spectra and three-dimensional fluorescence polarization (TDFP) spectra with tryptophan residues in protein molecules as an intrinsic fluorescent probe. The results show that the microenvironment of tryptophan residues of protein molecules in various solutions can be directly indicated and TDFS is an effective tool for studying protein conformation in solution. Meantime, some valuable results were obtained.  相似文献   

7.
The study of protein adsorption and any associated conformational changes on interaction with biomaterials is of great importance in the area of implants and tissue constructs. This study aimed to evaluate some fluorescent techniques to probe protein conformation on a selection of biodegradable polymers currently under investigation for biomedical applications. Because of the fluorescence emanating from the polymers, the use of monitoring intrinsic protein fluorescence was precluded. A highly solvatochromic fluorescent dye, Nile red, and a well-known protein label, fluorescein isothiocyanate, were employed to study the adsorption of serum albumin to polycaprolactone and to some extent also to two starch-containing polymer blends (SPCL and SEVA-C). A variety of fluorescence techniques, steady state, time resolved, and imaging were employed. Nile red was found to leach from the protein, while fluorescein isothiocyanate proved useful in elucidating a conformational change in the protein and the observation of protein aggregates adsorbed to the polymer surface. These effects were seen by making use of the phenomenon of energy migration between the fluorescent tags to monitor interprobe distance and the use of fluorescence lifetime imaging to ascertain the surface packing of the protein on polymer.  相似文献   

8.
Thiols and primary aliphatic amines (PAA) are ubiquitous and extremely important species in biological systems. They perform significant interplaying roles in complex biological events. A single fluorescent probe differentiating both thiols and PAA can contribute to understanding the intrinsic inter‐relationship of thiols and PAA in biological processes. Herein, we rationally constructed the first fluorescent probe that can respond to thiols and PAA in different fluorescence channels. The probe exhibited a high selectivity and sensitivity to thiols and PAA. In addition, it displayed sequential sensing ability when the thiols and PAA coexisted. The application experiments indicated that the probe can be used for sensing thiols and PAA in human blood serum. Moreover, the fluorescence imaging of endogenous thiols and PAA as well as antihypertensive drugs captopril and amlodipine in living cells were successfully conducted.  相似文献   

9.
The specific combination of human serum albumin and fluorescent dye will endow superior performance to a coupled fluorescent platform for in vivo fluorescence labeling. In this study, we found that lysine-161 in human serum albumin is a covalent binding site and could spontaneously bind a ketone skeleton quinoxaline–coumarin fluorescent dye with a specific turn-on fluorescence signal for the first time. Supported by the abundant drug binding domains in human serum albumin, drugs such as ibuprofen, warfarin and clopidogrel could interact with the fluorescent dye labeled human serum albumin to feature a substantial enhancement in fluorescence intensity (6.6-fold for ibuprofen, 4.5-fold for warfarin and 5-fold for clopidogrel). The drug concentration dependent fluorescence intensity amplification realized real-time, in situ blood drug concentration monitoring in mice, utilizing ibuprofen as a model drug. The non-invasive method avoided continuous blood sample collection, which fundamentally causes suffering and consumption of experimental animals in the study of pharmacokinetics. At the same time, the coupled fluorescent probe can be efficiently enriched in tumors in mice which could map a tumor with a high-contrast red fluorescence signal and could hold great potential in clinical tumor marking and surgical resection.

HSA lysine-161 covalent bound quinoxaline–coumarin based fluorescent dye realized in situ blood drug concentration monitoring and tumor visualization.  相似文献   

10.
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600–700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.  相似文献   

11.
Burrows SM  Pappas D 《The Analyst》2008,133(7):870-873
The complexation of a fluorescent probe by a target protein was observed by single-molecule fluorescence anisotropy. Free and bound states, heterogeneities, and rare binding events can all be observed by this approach. Fluorophore-conjugated biotin was used to bind to NeutrAvidin as a proof-of-concept case. Molecular interactions were observed that could not be elucidated with conventional (ensemble) measurements.  相似文献   

12.
《Analytical letters》2012,45(14):2350-2360
A sensitive and selective fluorescent aptasensor for adenosine triphosphate (ATP) was fabricated, composed of unbound SYBR Green I, graphene oxide, and a label-free detection probe. When ATP and complementary DNA of a signal probe were introduced, π-stacking interactions repelled the probe from the graphene oxide and formed a DNA-SYBR Green I duplex structure, triggering an increase in the fluorescence. ATP was determined over a linear range of 10 to 700 nM with a detection limit of 1 nM. The method displayed good selectivity, and is currently the most sensitive ATP fluorescence method. Furthermore, prominent fluorescence signals were also obtained in cellular assays. Consequently, the biosensor may have significant applications in protein, pathogenic microorganisms, and small molecule detection.  相似文献   

13.
A spectrophotometric method was used for the quantitative determination of binding in the poly-vinylpyrrolidone–rose bengal system. Binding of tiron, another anionic dye, onto polyvinylpyrrolidone was investigated by equilibrium dialysis. Comparison of binding constants of the two systems indicated the importance of hydrophobic interactions in binding. Because rose bengal can serve as a fluorescent probe, a fluorimetric method was also used and the increase in fluorescence confirmed the significance of hydrophobic interactions in the binding of the dye onto the polymer.  相似文献   

14.
A number of diseases have been linked to abnormal conformation of albumin, a major extracellular protein in blood. Current protein structural analysis requires pure isolated samples, thereby limiting their use for albumin analysis in blood. In this study, we report a new approach for high-throughput structure-related analysis of albumin by using the fluorescence lifetime properties of near-infrared (NIR) polymethine dyes. Based on molecular modeling, polymethine dyes are bound to two binding sites with different polarities on albumin. As a result, an NIR molecular probe exhibits two distinct lifetimes with two corresponding fluorescent fractional contributions. The distribution of fractional contributions along with individual fluorescence lifetimes represents unique parameters for characterizing albumin architecture by ratiometric analysis. After screening a small library of NIR polymethine dyes, we identified and used a polymethine dye with optimal fluorescence lifetime properties to assess structure-related differences in commercially available bovine serum albumin as model systems. The results show that changes in the lifetime of NIR dyes reflect the perturbation of the tertiary structures of albumin and that albumin prepared by different methods has slightly altered tertiary structures. Because of the reduced absorption of light by blood in the NIR region, the method developed can be used to determine structural changes in albumin in whole blood without prior isolation of the pure protein.  相似文献   

15.
In this contribution, we report studies on nonspecific protein-DNA interactions of an enzyme protein bovine pancreatic alpha-chymotrypsin (CHT) with genomic DNA (from salmon testes) using two biologically common fluorescent probes: 1-anilinonaphthalene-8-sulfonate (ANS) and 2,6-p-toluidinonaphthalene sulfonate (TNS). TNS molecules that are nonspecifically bound to positively charged basic residues at the surface sites, not in the hydrophobic cavities of the protein, are preferentially displaced upon complexation of TNS-labeled CHT with DNA. The time-resolved fluorescence anisotropy of TNS molecules bound to hydrophobic cavities/clefts of CHT reveals that global tumbling motion of the protein is almost frozen in the protein-DNA complex. A control study on TNS-labeled human serum albumin (HSA) upon interaction with DNA clearly indicates that the ligands in the deep pockets of the protein cannot be displaced by interaction with DNA. We have also found that ANS, which binds to a specific surface site of CHT, is not displaced by DNA. The intactness of the ANS binding in CHT upon complexation with DNA offers the opportunity to measure the distance between the ANS binding site and the contact point of the ethidium bromide (EB)-labeled DNA using the F?rster resonance energy transfer (FRET) technique. Enzymatic activity studies on CHT on a substrate (Ala-Ala-Phe 7-amido-4-methyl coumarin) reveal that the active site of the enzyme remains open for the substrate even in the protein-DNA complex. Circular dichroism (CD) studies on CHT upon complexation with DNA confirm the structural integrity of CHT in the complex. Our studies have attempted to explore an application of nonspecific protein-DNA interactions in the characterization of ligand binding of a protein in solution.  相似文献   

16.
We present a novel design strategy for off/on fluorescent probes suitable for selective two-step labeling of proteins. To validate this strategy, we designed and synthesized an off/on fluorescent probe, 1-Ni(2+), which targets a cysteine-modified hexahistidine (His) tag. The probe consists of dichlorofluorescein conjugated with nitrilotriacetic acid (NTA)-Ni(2+) as the His-tag recognition site and a 2,4-dinitrophenyl ether moiety, which quenches the probe's fluorescence by photoinduced electron transfer (PeT) from the excited fluorophore to the 2,4-dinitrophenyl ether (donor-excited PeT; d-PeT) and also has reactivity with cysteine. His-tag recognition by the NTA-Ni(2+) moiety is followed by removal of the 2,4-dinitrophenyl ether quencher by proximity-enhanced reaction with the cysteine residue of the modified tag; this results in a marked fluorescence increase. Addition of His-tag peptide bearing a cysteine residue to aqueous probe solution resulted in about 20-fold fluorescence increment within 10 min, which is the largest fluorescence enhancement so far obtained with a visible light-excitable fluorescent probe for a His-based peptide tag. Further, we successfully visualized CysHis(6)-peptide tethered to microbeads without any washing step. The probe also showed a large fluorescence increment in the presence of His(6)Cys-tagged enhanced blue fluorescent protein (EBFP), but not His(6)-tagged EBFP. We consider this system is superior to large fluorescence tags (e.g., green fluorescent protein: 27 kDa), which can perturb protein folding, trafficking and function, and also to existing small tags, which generally show little fluorescence increase upon target recognition and therefore require a washout step. This strategy should also be applicable to other tags.  相似文献   

17.
Huang DW  Niu CG  Qin PZ  Ruan M  Zeng GM 《Talanta》2010,83(1):185-189
In the present study, the authors report a novel sensitive method for the detection of thrombin using time-resolved fluorescence sensing platform based on two different thrombin aptamers. The thrombin 15-mer aptamer as a capture probe was covalently attached to the surface of glass slide, and the thrombin 29-mer aptamer was fluorescently labeled as a detection probe. A bifunctional europium complex was used as the fluorescent label. The introduction of thrombin triggers the two different thrombin aptamers and thrombin to form a sandwich structure. The fluorescence intensity is proportional to the thrombin concentration. The present sensing system could provide both a wide linear dynamic range and a low detection limit. The proposed sensing system also presented satisfactory specificity and selectivity. Results showed that thrombin was retained at the aptamer-modified glass surface while nonspecific proteins were removed by rinsing with buffer solution. This approach successfully showed the suitability of aptamers as low molecular weight receptors on glass slides for sensitive and specific protein detection.  相似文献   

18.
In order to provide a thorough characterization of a system with which to study the dielectric response of a protein, a well-defined system complex of a fluorescent probe and protein is required. We have argued that such a system is provided by coumarin 153 and apomyoglobin (Photochem. Photobiol. 79, 440-446 [2004]). In order to demonstrate further that coumarin 153 exhibits negligible nonspecific binding to the surface of apomyoglobin, we study its interactions with both the apo and holo proteins. We further make a similar comparison with 8-anilino-l-naphthalenesulfonic acid, for which an NMR structure with apomyoglobin has been obtained. Our results confirm the appropriateness of the system of coumarin 153 and apomyoglobin for the investigation of solvation by the protein matrix.  相似文献   

19.
Molecular aptamers for real-time protein-protein interaction study   总被引:5,自引:0,他引:5  
Protein-protein interactions play critical roles in cellular functions, but current techniques for real-time study of these interactions are limited. We report the real-time monitoring of protein-protein interactions without labeling either of the two interacting proteins; this procedure poses minimum effects on the binding properties of the proteins. Our strategy uses a protein/aptamer complex to probe the interactions in a competitive assay where the binding of an aptamer to its target protein is altered by a second protein that interacts with the target protein. Two signal transduction strategies, fluorescence resonance energy transfer (FRET) and fluorescence anisotropy, have been designed to study the interactions of human alpha-thrombin with different proteins by using two aptamers specific for two binding sites on alpha-thrombin. Our method has been shown to be simple and effective, does not require labeling of proteins, makes use of easily obtainable aptamers, provides detailed protein-protein interaction information and has excellent sensitivity for protein detection and protein-protein interaction studies. The FRET and the fluorescent anisotropy approaches complement each other in providing insight into the kinetics, mechanisms, binding sites and binding dynamics of the interacting proteins.  相似文献   

20.
The fluorescent amino acid l-(7-hydroxycoumarin-4-yl) ethylglycine 1 has been genetically encoded in E. coli in response to the amber TAG codon. Because of its high fluorescence quantum yield, relatively large Stoke's shift, and sensitivity to both pH and polarity, this amino acid should provide a useful probe of protein localization and trafficking, protein conformation changes, and protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号