首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of Au‐on‐Pd heteronanostructure (HNS) using citrate‐stabilized polycrystalline Pd nanoparticles (NPs) as the seeds is described. The resulting Au‐on‐Pd HNS is characterized and it is found that the formation of Au‐on‐Pd HNS depends greatly on a ratio between Pd seeds and AuCl4? ions added and the optimal molar ratio is 10:1. If fewer AuCl4? ions are added (Pd/Au ratio is 100:1), the growth of Au NPs only occurs on part of the Pd seeds’ surface. The addition of more AuCl4? ions (Pd/Au ratio is 5:1) hinders the growth of Au NPs on the Pd seeds’ surface. To demonstrate the catalytic performance, the electrochemistry oxidation of ethanol and the reduction of p‐nitrophenol by NaBH4 are chosen to examine the catalytic activity of Au‐on‐Pd HNS. Pd seeds, Au NPs, and poly(vinyl pyrrolidone) (PVP)‐stabilized PdAu nanoalloy are used as the references for comparison. In the first reaction, the catalytic reactivity of Au‐on‐Pd HNS is better than that of corresponding pure Pd or Au NPs, while the opposite occurs for the latter reaction. The catalytic activity of Au‐on‐Pd HNS is much higher than that of PVP‐stabilized PdAu nanoalloy.  相似文献   

2.
Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.  相似文献   

3.
Carbon supports modified with well dispersed anatase TiO2 (C–Ti-X; X (0.25, 0.5, 0.75, and 1.0) represents mass ratio of Ti precursor to carbon) were synthesized with various Ti loadings and used to support Pd catalysts for oxygen reduction. The anatase nanoparticles increased in size with increasing Ti loading. Pd dispersion improved with increasing Ti loading up to the C–Ti-0.75, which resulted in the best catalytic activity. Although the Pd dispersion was lowest on the C–Ti-1.0, it showed better catalytic performance than the catalysts supported on C–Ti-0.25 and C–Ti-0.5. At 0.8 V (vs. RHE), the best catalytic activity achieved was respectively 2.7 and 2.7 times the mass and specific activities of Pd supported on un-modified carbon. The interaction between Pd and highly dispersed TiO2 is believed to improve the catalytic activity of Pd supported on TiO2-modified carbons.  相似文献   

4.
The reduction of 4‐nitrophenol (Nip) into 4‐aminophenol (Amp) by NaBH4, which is catalyzed by both binary and ternary yolk–shell noble‐metal/SnO2 heterostructures, is reported. The binary heterostructures contain individual Au or Ag nanoparticles (NPs) and the ternary heterostructures contain both Au and Ag NPs. The Au@SnO2 yolk–shell NPs are synthesized via a silica seeds‐mediated hydrothermal method. Subsequently, the Au@SnO2@Ag and Au@SnO2@Au yolk–shell–shell (YSS) NPs are synthesized, whereby SnO2 is located between the Au and Ag NPs. The morphology, composition, and optical properties of the as‐prepared samples are analyzed. For the binary heterostructures, the rate of the reduction reaction increases with decreasing particle size. The catalytic results demonstrate the synergistic effect of Au and Ag in the ternary metal–semiconductor heterostructures, which is beneficial to the catalytic reduction of Nip into Amp. Both the binary and ternary heterostructures exhibit significantly better catalytic performances than the corresponding bare Au and Ag NPs. It is envisaged that the current synthesized strategy will promote further interest in the field of bimetal NP‐based catalysis.  相似文献   

5.
Structure engineering is an effective strategy to enhance the performance of electrocatalysts for the formic acid oxidation reaction. However, it remains a challenge to prepare a highly active electrocatalyst based on a distinct understanding of its structure‐dependent performance. The design and synthesis of ultrathin‐carbon‐layer‐protected PtCu nanoparticles (NPs) encapsulated in a N‐doped carbon capsule (PtCu@NCC) is reported. This system is fabricated by using Zn‐based metal–organic frameworks as the carbon support source and metal‐containing tannic acid as the protecting shell template. It displays 9.8‐ and 9.6‐fold enhancements in mass activity and specific activity compared to commercial Pt/C. Moreover, a constructed direct formic acid fuel cell using PtCu@NCC as the anodic electrocatalyst delivers a maximum power density of 121 mW cm?2. Significantly, PtCu@NCC exhibits superior structural stability and catalytic durability in both half‐cell and full‐cell tests. A mechanism study reveals that the enhanced activity is partially attributed to facilitated electro‐oxidation kinetics of formic acid in the unique structure of PtCu@NCC, while the excellent durability stems from the “protecting effect” of the in‐situ‐formed ultrathin carbon layer on the surface of the PtCu NPs. This work opens a new avenue for the development of high‐performance electrocatalysts for fuel‐cell applications by offering essential insights into the structure–performance relationship of the materials.  相似文献   

6.
Under visible‐light irradiation, gold nanoparticles (Au NPs) supported by titania (TiO2) nanofibers show excellent activity and high selectivity for both reductive coupling of nitroaromatics to corresponding azobenzene or azoxylbenzene and selective oxidation of aromatic alcohols to corresponding aldehydes. The Au NPs act as active centers mainly due to their localized surface plasmon resonance (LSPR) effect. They can effectively couple the photonic energy and thermal energy to enhance reaction efficiency. Visible‐light irradiation has more influence on the reduction than on the oxidation, lowering the activation energy by 24.7 kJ mol?1 and increasing the conversion rate by 88% for the reductive coupling, compared to merely 8.7 kJ mol?1 and 46% for the oxidation. Furthermore, it is found that the conversion of nitroaromatics significantly depends on the particle size and specific surface area of supported Au NPs; and the catalyst on TiO2(B) support outperforms that on anatase phase with preferable ability to activate oxygen. In contrast, for the selective oxidation, the effect of surface area is less prominent and Au NPs on anatase exhibit higher photo‐catalytic activity than other TiO2 phases. The catalysts can be recovered efficiently because the Au NPs stably attach to TiO2 supports by forming a well‐matched coherent interface observed via high‐resolution TEM.  相似文献   

7.
Palladium-ytterbium (Pd-Yb) bimetallic catalysts with different Pd/Yb ratios supported on carbon black (20%Pd-x%Yb/C, x?=?0, 1, 5, 10, and 15) were prepared by a sodium borohydride reduction method. The 20%Pd-5%Yb/C catalyst exhibited the best electrocatalytic activity towards methanol oxidation in alkaline media. The improved electrocatalytic activity and stability of 20%Pd-5%Yb/C can be explained by a bi-functional mechanism. In addition, the higher content of metallic palladium caused by the addition of ytterbium also contributes to the better catalytic activity of the 20%Pd+5%Yb/C catalyst. In view of the good electrocatalytic performance of 20%Pd+5%Yb/C, the 20%Pd+5%Yb catalyst supported on titanium suboxide (20%Pd+5%Yb/Ti4O7) was prepared. However, the Pd-Yb particles supported on Ti4O7 were seriously agglomerated. To improve the dispersion status of alloy particles, the Ti4O7 was functionalized with poly(diallyldimethylammonium chloride) (Ti4O7-PDDA). Electrochemical characterizations showed that no matter Ti4O7 or Ti4O7-PDDA as supports, Pd-Yb catalysts exhibited better catalytic activity than 20%Pd-5%Yb/C. The improvement mainly results from the further increase of metallic Pd due to the presence of Ti4O7.  相似文献   

8.
Palladium nanoparticles supported on carbon Vulcan XC72 (Pd/C) and on phosphorus-doped carbon (Pd/P-C) were prepared by an alcohol reduction process. X-ray diffractograms of Pd/C and Pd/P-C showed the typical face-centered cubic (fcc) structure of Pd. The crystallite sizes of Pd fcc phase were around 8 nm for both samples. X-ray photoelectron spectroscopy revealed to Pd/C and Pd/P-C that Pd was found predominantly in the metallic state and to Pd/P-C, the presence of P increases the amount of oxygen on the electrocatalyst surface. The activity and stability of the electrocatalyts for ethanol electro-oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry experiments. The peak current density on Pd/P-C was 50% higher than on Pd/C, while the current density measured after 30 min at ? 0.35 V vs. Hg/HgO was 65% higher on Pd/P-C than on Pd/C. The enhancement of the catalytic activity of Pd/P-C electrocatalyst might be related to the presence of higher amounts of oxygen species on the surface, which could contribute to the oxidation of intermediates formed during ethanol electro-oxidation process.  相似文献   

9.
A highly dispersed and ultrafine carbon supported Pd nanoparticles (Pd/C) catalyst is synthesized by a facile homogeneous precipitation-reduction reaction method. Under the appropriate pH conditions, [PdCl4]2− species in PdCl2 solution are slowly transformed into the insoluble palladium oxide hydrate (PdO·H2O) precipitation by heat treatment due to a slow hydrolysis reaction, which results in the generation of carbon supported PdO·H2O nanoparticles (PdO·H2O/C) sample with the high dispersion and small particle size. Consequently, a highly dispersed and ultrafine Pd/C catalyst can be synthesized by PdO·H2O → Pd0 in situ reduction reaction path in the presence of NaBH4. As a result, the resulting Pd/C catalyst possesses a significantly electrocatalytic performance for formic acid electrooxidation, which is attributed to the uniformly sized and highly dispersed nanostructure.  相似文献   

10.
Many late transition binary alloy nanoparticles (NPs) have been fabricated through a wide variety of techniques. Various steps are involved in the fabrication of such NPs. Here, we used a simple and green route to fabricate solid-solution Rh–Pd and Rh–Pt bimetallic alloy NPs through femtosecond laser irradiation in a solution without any chemicals like reducing agents. X-ray diffraction (XRD) peaks of NPs obtained in the solutions with different ratios of Rh–Pd and Rh–Pt ions monotonically varied from the position of pure Rh to those of Pd and to Pt which respectively indicated that these NPs were alloy. Composition of fabricated NPs was fully tuned over the entire range of Rh1?x –Pd x , and Rh1?x –Pt x with varying the mixing ratio of metal ions in the solution. Studies of Rh–Pd and Rh–Pt solid-solution system suggest that the alloy formation occurs through the nucleation of Rh and then followed by the diffusion of Rh, Pd and Rh, Pt to form a homogeneous alloy. The variety of average size of the alloy NPs for different compositions could be attributed to different reduction rate and surface energies of metal ions. Our result implies that femtosecond laser irradiation in aqueous solution is one of the potential methodologies to form multimetallic solid-solution alloy NPs with fully tunable composition.  相似文献   

11.
In this study, ultrasonic assisted synthesis of Pd-Ni/Fe3O4 core–shell nanoalloys is reported. Unique reaction condition was prepared by ultrasonic irradiation, releasing the stored energy in the collapsed bubbles and heats the bubble contents that leads to Pd(II) and Ni(II) reduction. Co-precipitation method was applied for the synthesis of Fe3O4 nanoparticles (NPs). Immobilized solution was produced by sonicating the aqueous mixture of Fe3O4 and mercaptosuccinic acid to obtain Pd-Ni alloys on Fe3O4 magnetic NP cores. The catalytic activity of the synthesized Pd-Ni/Fe3O4 core–shells was investigated in the Suzuki-Miyaura CC coupling reaction and 4-nitrophenol reduction, which exhibited a high catalytic activity in both reactions. These magnetic NPs can be separated from the reaction mixture by external magnetic field. This strategy is simple, economical and promising for industrial applications.  相似文献   

12.
A general family of magnetic nanocomposites formed by FeNi3 ferromagnetic nanoparticles (NPs) embedded in a graphitized carbon matrix is reported. The soft chemical approach used relies on the catalytic effect of the NPs resulting from the thermal decomposition of the layered double hydroxide precursor, which acts as a multilayered nanoreactor enabling the formation of a range of carbon nanoforms (CNFs). This is followed by acid treatment of the as‐prepared nanocomposites to isolate the different CNFs formed. These range from carbon nano‐onions to graphene depending on the temperature of the thermal decomposition. This synthetic process paves the way for the rational design of metal–carbon nanocomposites with controllable composition as precursors of nanocarbons or even graphene. The coexistence of metal NPs and nanostructured carbon is a major source of applications. As a proof of concept, the electrochemical performance of these metal–carbon hybrid supercapacitors is studied under high discharging current densities and they exhibit high values of specific capacitance and excellent rate capabilities.  相似文献   

13.
In this study, carbon supported Pt and Pt-Pd were synthesized as oxygen reduction reaction electrocatalysts for polymer electrolyte membrane fuel cells (PEMFCs). Pt and Pt-Pd nanoparticles have been synthesized by reduction of metal precursors in presence of NaBH4. Various techniques such as X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were utilized to study the prepared samples. Furthermore, electrochemical properties of the prepared samples were evaluated from cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The results showed, the crystallite size of electrocatalysts (Pt and Pt-Pd) is below 10 nm. The higher catalytic activity was detected for Pt-Pd/C electrocatalyst for oxygen reduction reaction (ORR). In addition, it is believed that the better performance of electrocatalyst is related to the synergic effect between Pt and Pd nanoparticles, weakening of the OO bond on Pd-modified Pt nanoparticles in ORR, uniform dispersion of Pd and Pt on the carbon support and higher electrochemical active surface area (EAS) of Pt-Pd/C electrocatalyst.  相似文献   

14.
A Bi-promoted charcoal-supported Pd–Pt oxidation catalyst prepared from colloidal NOct4Cl-stabilized Pd–Pt nanoparticles was investigated by means of X-ray photoelectron spectroscopy (XPS). Pd 3d, Pt 4f, Bi 4f, C 1s and O 1s spectra of the colloid, the supported colloid catalyst and a conventional charcoal-supported Pd–Pt/Bi coimpregnation catalyst (Degussa, CEF 196 RA/W) were measured. Both catalysts were explored unused (as-prepared) and after deactivation in the heterogeneous catalytic oxidation of glucose to gluconic acid. The spectra are analyzed to elucidate the higher starting activity of the Pd–Pt/Bi/C colloid catalyst, especially the role of the promotor Bi and the mechanisms leading to catalyst deactivation. The higher starting activity of the colloid catalyst is explained by the presence of completely reduced Pd and Pt, threevalent Bi and a smaller particle size in contrast to the conventional catalyst which contains partly oxidized Pd and a non-unique chemical state of Bi. The deactivation of both catalysts is suggested to be due to metal dissolution, particle growth and chemical poisoning.  相似文献   

15.
Utilizing metal‐organic frameworks (MOFs) as a “polymerization container” is a very effective method to prepare oriented and therefore birefringent polymer materials. In particular, the adsorption of polymer monomers and molecular chains within MOFs has a profound impact on the orientation of polymer chains. In this work, a theoretical study on the adsorption properties of methyl methacrylate (MMA) and its molecular chain within MOFs has been conducted by employing a combination of molecular dynamics, density functional theory, and Monte Carlo method, where 2 MOFs, [Zn2(1,4‐benzenedicarboxylate)2triethylenediamine]n and [Zn2(4,4′‐biphenyldicarboxylate)2triethylenediamine]n, were chosen. The corresponding number and degree of orientation of adsorbed molecules in these 2 MOFs were obtained from the simulations. The calculation results revealed 3 factors that affect the adsorption and orientation of MMA monomers in MOF pore channels. First, as the walls of the MOF pores are polar surfaces and consist of metal ions and organic ligands, the electrostatic interaction between the MOF channels and polar MMA molecules promotes the adsorption and orientation of the MMA monomers within the pore channel. Second, the electrostatic interactions between monomers can reduce the intermolecular gaps, which similarly assist in their orientation. Last, the relative sizes of the MOF pores and the monomers are also relevant. When the sizes of the MOF channels and monomers are similar, the molecular chains show a higher degree of orientation. The results and the findings of this work could provide predictive methods for selecting polymeric monomers or MOFs that may be ideal for the control of polymer chain orientation.  相似文献   

16.
Here, a microwave‐assisted approach has been demonstrated to rapidly prepare magnetic Pd–CoFe2O4–graphene (GE) composite nanosheets in ethylene glycol (EG) solvent. The generation of both Pd and CoFe2O4 nanoparticles is accompanied with the reduction process of graphene oxide (GO) by EG. The surface morphologies and chemical composition of the composite nanosheets are characterized by transmission electron microscopy (TEM), energy‐dispersive X‐ray spectrometer (EDS), powder X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) measurements. The as‐prepared Pd–CoFe2O4–GE composite nanosheets exhibit a remarkable catalytic activity towards the reduction of 4‐nitrophenol by sodium borohydride (NaBH4) at room temperature. The apparent kinetic rate constant (K app) of this catalytic reaction could reach about 11.0 × 10?3 s?1. Moreover, the CoFe2O4 component exhibits a magnetic property, which could make the Pd–CoFe2O4–GE composite nanocatalysts separated from the suspension system. The catalytic conversion of the 4‐nitrophenol to 4‐aminophenol could reach 87.2% after four cycles. This work presents a simple, rapid, and versatile method to fabricate both metal and spinel‐type complex oxides on GE nanosheets, providing a new opportunity for their applications in the recyclable catalytic reaction.  相似文献   

17.
The catalytic characteristics of Pd/Ga2O3 samples in the liquid-phase hydrogenation of acetylene to ethylene are studied. The structure of the catalyst’s components before and after the reaction is examined by EXAFS spectroscopy. The activity of the original (after drying) samples results from the reduction of the original palladium oxide to a metallic state in the reaction medium. According to EXAFS, the catalysts reduced at 200°C contain small amounts of Pd-Ga alloy that was preserved in the reaction medium during the liquid-phase hydrogenation of acetylene and presumably increased the activity and selectivity of the samples.  相似文献   

18.
Strain analysis of the MOF and its composites using high-resolution X-ray diffractionmeter (XRD) was carried out and the presence of non-uniform, depth-related strain in the MOF crystals was confirmed. Further analysis showed that the magnitude and distribution of strain in MOF crystals can be tuned with the incorporation of nanoparticles (NPs). Moreover, the spatial controlled structures can also optimize functionalities of the NPs@MOF, which was exemplified by their applications on the catalytic reduction of nitroarenes. It is anticipated that the investigation of MOF structure evolution through controlling the architectures of the MOF/NPs hybrid materials will shed a light on the study of optimizing the mechanical and chemical properties of MOF composites.  相似文献   

19.
We report the direct observation of surface‐enhanced Raman scattering (SERS) effect using metal–organic frameworks (MOFs) as substrates. Without the aid of any metal colloids or enhancing agents, the SERS signals of methyl orange (MO) adsorbed in MOFs were observed and even remained active if the organic linkers in MOFs were completely removed by high temperature and O2 plasma treatments. It implies that the SERS active site is at the metal oxide clusters. The ultraviolet‐visible spectra of MO, MOFs, and MO–MOF complexes show that absorption peaks are far from laser excitation line. Thus, conventional resonance enhancement effect should be ruled out, and charge‐transfer mechanism is the most likely scenario responsible for the observed SERS effect. Density functional theory (DFT) was used to interpret the chemical enhancement mechanism and the adsorption orientation‐dependent SERS spectra in our observation. The preferred adsorption orientations calculated by DFT method are consistent with the observed SERS results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Various C‐doped metal oxide nanoparticles (NPs) are prepared from metal nitrates in poly‐(methyl vinyl ether‐co‐maleic anhydride) (PVM/MA) nanoreactors. The loading of metal nitrates in the nanoreactors is realized via a process of solution‐enhanced dispersion by supercritical CO2. When the temperature exceeds the thermal decomposition temperature of the nitrates, the nitrates‐loaded nanoreactors transform into C‐doped metal oxide NPs. ZnO, NiO, and Co3O4 NPs as representative of the doped oxides are successfully fabricated. A precise control over the doping concentration and doping site in the lattice is achieved by changing the mass ratio between PVM/MA and metal nitrate. The controllable carbon doping avoids undesirable aggregation of carbon species and metal oxide NPs, endows the NPs with broad and strong absorption bands in the visible light region, and creates channels for separation of photo‐generated electrons and holes. In this regard, the resultant C‐doped metal oxide NPs exhibit excellent photocatalytic, photo‐induced antibacterial, and photothermal performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号