首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Tribophysical (mechanical) activation is used as a method for modification of physico-chemical properties of dispersed systems such as polycrystalline mixture of ZnO and Cr2O3 powders, obtained by conventional ceramic powder processing wet technique. Conventional mixtures were tribophysically activated by grinding in a vibro-mill with a continual regime in air. Conventional mixture and tribophysically activated mixtures, with activation times of 40 and 80 minutes, were thermally treated in non-isothermal and isothermal conditions. Solid-state reactions in non-isothermal conditions were examined by X-ray diffraction, differential thermal analysis and dilatometric measurements. The influences of tribophysical activation on solid-state reaction between ZnO and Cr2O3, during thermal treatment in isothermal conditions were investigated by X-ray diffraction line broadening theory. As a Fourier method for the pure physical line profile analysis a double-Voigt method is used. Mechanism of mass transport during solid-state reaction in ZnO-Cr2O3 system is proposed.  相似文献   

2.
以六水合氯化铝和尿素为原料,甲醇为溶剂,在NH3气氛下通过湿化学法制备AlN粉体,并采用X射线衍射仪、扫描电子显微镜和激光粒度仪对产物进行表征。结果表明:煅烧温度在900 ℃以上可获得六方AlN粉体;煅烧温度为1 000 ℃时获得的AlN粉体具有球形特征,粉体的平均晶粒尺寸为17.0 nm,平均粒径为159.5 nm。使用透射电子显微镜进一步表征了AlN粉体的微观结构。拉曼光谱结合能谱分析表明,存在于AlN粉体中的非晶杂质不是残留的含碳副产物,而是粉体表面水解产生的氢氧化铝。  相似文献   

3.
Titanium dioxide films have been deposited using DC magnetron sputtering technique. Films were deposited onto RCA cleaned p‐silicon substrates at the ambient temperature at an oxygen partial pressure of 7 × 10–5 mbar and sputtering pressure of 1 × 10 –3 mbar. The deposited films were annealed in the temperature range 673–873 K. The structure and composition of the films were confirmed using X‐ray diffraction and Auger electron spectroscopy. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature.  相似文献   

4.
《Journal of Non》2006,352(30-31):3244-3248
Amorphous 55Mg35Ni10Si alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg–Ni–Si bulk amorphous components through powder metallurgy.  相似文献   

5.
《Journal of Non》2006,352(32-35):3729-3733
Nanoparticles of fcc-NiO phase were obtained by heating the dried resin resultant of a mixture of gelatin and NiCl2 · 6H2O in aqueous solution. The average particle size and microstrain were calculated from the line broadening of X-ray powder diffraction peaks, and these values were between 15 nm and 78 nm, and 0.056% and 0.172%, respectively. The Rietveld refinement method was applied to all diffraction patterns. The particle size, obtained from this procedure, changes as a function of temperature, heating time and the remarkable reduction due to the addition of NaOH to the solution, which can be attributed to the presence of NaCl crystals and carbon encapsulating NiO nanoparticles during the heating. The heating temperature was in the range of 350–700 °C. Thermo-gravimetric analysis showed that the majority of organic fraction starts to disappear after 300 °C.  相似文献   

6.
以碳化硅(SiC)、二氧化钛(TiO2)和不同种类碳源为初始原料,采用碳热还原法在氩气气氛下原位合成SiC-TiC超细粉末.探讨了不同碳源和不同反应温度对所合成的SiC-TiC超细粉末的物相组成和显微形貌的影响.采用X-射线衍射仪(XRD)、激光粒度分析仪、扫描电镜(SEM)等手段对所合成的SiC-TiC超细粉末进行表征.实验结果表明,以蔗糖为碳源合成SiC-TiC超细粉末的适宜条件为1450 ℃保温2 h;以炭黑或葡萄糖为碳源合成超细粉末的适宜条件为1500 ℃保温2 h.三种碳源中以炭黑为碳源时所合成的SiC-TiC超细粉末粒度最小且合成出的粉末样品分散性好,大部分球状颗粒在0.5~1.0 μm 左右.在SiC粉末中原位合成的TiC颗粒,以粒径在0.1~0.2 μm左右的不规则的多样化结构颗粒存在.  相似文献   

7.
以硅溶胶、葡萄糖和TiO2为初始原料,采用碳热还原法在氩气气氛下合成SiC-TiC复合粉末.探讨了不同反应温度对SiC-TiC复合粉末的物相组成、粒径分布、显微形貌等方面的影响.采用X-射线衍射仪(XRD)、激光粒度分析仪、扫描电镜(SEM)等手段对所合成的SiC-TiC复合粉末进行表征.研究结果表明:SiC-TiC复合粉末适宜的合成条件为在1550℃保温2h.在1550℃下合成的SiC-TiC复合粉末主要由少量的片状颗粒、一定量的晶须以及大量的近似球状颗粒构成.粉末样品中SiC晶须的生长机理遵循气-固(VS)机理.  相似文献   

8.
Eu:GaN powder synthesized using a high temperature ammonothermal process is known to be dark in appearance due to presence of Eu-containing absorbing particles. Improvement of the visual quality of the Eu:GaN powder is achieved by rinsing in dilute acids. Acid-rinsed Eu:GaN has photoluminescence (PL) enhanced by a factor of 3 when compared to as-prepared Eu:GaN. Such visually clear powders are used for making Eu:GaN nanoparticles of sizes 30–50 nm using a soft ball-milling technique. The particle size was determined using X-ray diffraction, scanning electron microscopy and a dynamic light scattering system. Longer durations of a “soft” ball-milling technique results in particle size reduction. These nanopowders show significant photoluminescence intensity with no yellow luminescence, and have a reduced PL intensity with increasing ball-milling time. Eu:GaN nanopowder embedded in a KBr matrix shows at least a 10× improvement in transmittance when compared to as-prepared powders. The improvement of transmittance depends on both the concentration and particle size. This improved transmittance suggests that such a transparent matrix could be used as a laser gain medium.  相似文献   

9.
《Journal of Non》2005,351(6-7):508-514
Yttria stabilized zirconia (YSZ) powders were used for the replacement of amalgam alloy in Miracle Mix on a volume basis, in order to improve the mechanical properties of the cements. Two types of YSZ powders were used in this study, i.e., nano-sized (5–15 nm) and micro-sized (2–10 μm) YSZ. The effects of YSZ powders substituted within glass ionomer cement (GIC) were investigated based on their microhardness, compressive strength and diametral tensile strength. The effects of the particle size of YSZ powders on the mechanical properties of YSZ-GIC composites were also studied. The YSZ-GIC composites were soaked in distilled water for 1 day and 1 week before the mechanical testing. The mechanical properties of Miracle Mix samples were used for comparison. Results showed that the glass and YSZ particles were distributed uniformly in the matrix of GIC. YSZ-GIC composites had better mechanical properties than Miracle Mix samples. The mechanical properties of YSZ-GIC composites increased with increasing soaking time due to the continuous formation of aluminium salt bridges, which improved the strength of the cements. The micro-sized YSZ/glass powders revealed a bimodal particle size distribution and this ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of YSZ-GIC composites. YSZ-GIC composites prepared by the nano-sized YSZ powders showed low values of mechanical properties because of the low packing density of the nano-sized powders and hence low powder/liquid ratio of GIC.  相似文献   

10.
Nanostructured materials win big scientific interest and increasingly economic meaning through their specific exceptional properties. Precursors that were compacted by pressing and sintering are normally used preparation of materials. In present work, the influence of mechanical activation by grinding on the structure as well as on compacting and sintering behavior of oxides from magnesium, aluminium and silicon has been investigated. Starting materials for each metal oxide differ in microstructure, dispersity, and porosity. The influence of mechanical activation on the destruction of crystalline structure to nanocrystalline, as well as to the amorphous stage and the compaction of powders with nano‐particles, as well as structures with nanoscale pores have been compared. The possibilities of the consolidation of nanostructured materials were investigated. The mechanical activation took place in a disc vibration mill. The mechanical activated materials as well as their pressing and their sintering products were characterized by density, particle‐sizedistribution, specific surface, pore‐structure, microstructure, and crystallite size by X‐ray powder diffraction (XRD). The mechanical activation of the model‐substances led, in most cases, to an improvement of the compaction properties; thus, this improvement can be achieved with subsequent sintering densities up to 98% of the theoretical density. From these experiments, generalizations transferable to other materials can be made.  相似文献   

11.
The structure and properties of Czochralski (Cz)‐grown Ge1‐xSix mosaic crystals were investigated using optical microscopy, atomic force microscopy, X‐ray diffraction analysis, microprobe analysis, FTIR and transmission electron microscopy. The role of segregation, form of solid‐liquid interface and dislocation generation in the development of mosaic structure were analyzed and used for optimization of growth parameters such as Si concentration and growth rate. The dislocation density estimated experimentally was compared with the calculated data. Composition fluctuations caused by formation of cellular structure at the interface lead to a local lattice misorientation that is one of the reasons for crystal mosaicity. Model of mosaic structure generation in terms of dislocation density and composition variations is presented.  相似文献   

12.
Nanocrystalline and microcrystalline ZnO powders are synthesized by the pyrolysis of organic zinc salts in the presence of a reducing catalyst represented by a porous cellulose carrier. The specimens obtained are characterized by X-ray powder diffraction, energy dispersive analysis, scanning electron microscopy, and pulse cathodoluminescence. Lasing characteristics of the specimens are studied. The synthesis conditions, under which specimens with the crystallite morphology optimal for a low-threshold lasing are obtained, are found.  相似文献   

13.
The nanocrystalline powders of Y4Al2O9 (YAM) pure and doped by Nd, Yb and codoped by Nd and Yb were obtained via modified sol‐gel method. These powders were characterized by X‐ray diffraction method, scanning electron microscopy and high resolution scanning electron microscopy, luminescence spectroscopy and differential thermal analysis (DTA). We obtained single phase powders of crystalline structure with average size 70 nm exhibiting interesting luminescent properties. Efficient non‐radiative energy transfer between Nd and Yb was found. DTA confirmed the phase transition at about 1400 °C. From these nanocrystalline powders, the crystals YAM:Yb, YAM:Yb,Nd were grown by micro‐pulling down technique. They were cracking during cooling owing to the phase transition. Luminescent properties of YAM:Nd,Yb crystals were identical with properties of corresponding nanopowders within experimental incertitude. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
本文主要讨论CZ法生长TeO2晶体中温度梯度、拉速、转速等工艺参数对晶体质量的影响,分析了晶体开裂、包裹物等宏观缺陷以及位错等微观缺陷的形成机理.从晶体形态、包裹体和位错密度变化等方面探讨了晶体生长参数与晶体缺陷之间的内在关系.  相似文献   

15.
The development of novel and high‐performance cathodes is a critical issue to be addressed in order to reduce Solid Oxide Fuel Cells (SOFCs) operation temperature to the 600‐800 °C range or less. The performance of CeO2‐based composite cathodes is very attractive to such operational temperatures. In this work, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and Ce0.8Sm0.2O1.9 (SDC) powders were synthesized by different synthesis methods and mechanically mixed to prepare LSCF‐SDC composite cathodes. Screen‐printed LSCF‐SDC/CGO/LSCF‐SDC symmetrical cells were sintered at 1150 °C for 4 h and characterized by electrochemical impedance spectroscopy in static air. X‐ray diffraction and scanning electron microscopy were employed to characterize the powders. Area specific resistance values of 0.72 and 2.77 Ω cm2 at 800 °C were found for composite cathodes containing SDC powder synthesized by modified Pechini and microwave‐assisted combustion methods, respectively. Furthermore, the activation energy of the composite cathode containing SDC derived from modified Pechini method is 1.18 eV, i.e., much lower than 1.73 eV, value determined for LSCF with SDC from microwave‐combustion method.  相似文献   

16.
采用溶胶凝胶法制备的前驱物进一步在900℃,氨气气氛中氮化得到粒径相对均匀、平均粒径为11.2nm的六方相氮化镓纳米晶体.XRD, HRTEM, SAED, EDS, FTIR被用于表征产物的微结构及组成.室温光致发光光谱显示产物位于3.46eV的带边发光峰和从 2.6~3.2eV 的宽的发光带.产物可直接用于制备氮化镓量子点复合材料和制备高质量的一维氮化镓晶体.  相似文献   

17.
在一定的过饱和度下,分别用点状和片状籽晶在不同pH值溶液中生长出了KDP晶体.利用化学腐蚀法对KDP晶体的不同晶面进行了腐蚀,得到了清晰的位错蚀坑.应用光学显微镜对位错蚀坑的分布特点和密度做了观察分析,发现很多位错蚀坑成线状排布.pH值对KDP晶体位错密度有较大影响,低pH值条件下生长出的晶体位错密度较大.测试了KDP晶体样本的透过率,结果表明位错密度对KDP晶体的透过率没有明显的影响.  相似文献   

18.
Lanthanum monoaluminate (LaAlO3) nanoparticles have been synthesized using microreactors made of poly(oxyethylene) nonylphenyl ether (Igepal CO-520)/water/cyclohexane microemulsions. The control of particle size was achieved by varying the water-to-surfactant molar ratio. The synthesized and calcined powders were characterized by thermogravimetry–differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Differential thermal analysis showed that LaAlO3 phase transformation decreases with increase in water/surfactant (R) value. Pure LaAlO3 phase was synthesized by annealing at 800 °C for 2 h in air directly from amorphous precursors, without formation of intermediate phase. The average particle size was found to increase with increase in water-to-surfactant ratio (R). FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and calcined powder.  相似文献   

19.
《Journal of Non》2007,353(11-12):1188-1194
A fast aqueous citrate–nitrate process has been successfully used to prepare the stoichiometric BaCeO3 powders. It was found that an optimal amount of water added in the mixing process of barium nitrate, cerium nitrate, and citric acid is helpful on the formation of a clear gel that was subsequently formed by the condensation of added diethylene glycol monomers at room temperature. The gel was heated to an easily handled precursor in a powder form at 400 °C for 1 h. The precursors were characterized by X-ray powder diffraction (XRD), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), thermal mechanical analysis (TMA), Fourier transform infrared spectrometry (FTIR), and scanning electron microscopy (SEM). The phase evolution from the precursor to the desired BaCeO3 powders by XRD and FTIR revealed that the presence of BaCO3 is a complex problem in this process. A high-temperature trigonal BaCO3 intermediate was found between 800 °C and 1000 °C by the in-situ X-ray powder diffraction experiments. The phase purity of the formed BaCeO3 powders may be more properly identified by FTIR instead of XRD because of the amorphous feature of the carbonate phase. The TMA revealed that at 1100 °C part of the precursor crystallized to needle-shaped BaCeO3 crystals accompanied by a small expansion, which is also related to the presence of BaCO3 in the precursor, and this can be removed by a preheating treatment of the precursor at 900 °C for 4 h.  相似文献   

20.
本文利用金属有机化合物化学气相沉积(MOCVD)技术在(001)面图形化蓝宝石衬底(PSS)上生长了一种含有AlGaN-InGaN/GaN MQWs (multiple quantum wells)-AlGaN双势垒结构的高In组分太阳能电池外延材料。高分辨率X射线衍射(HRXRD)和光致发光(PL)谱分析表明,与含有AlGaN电子阻挡层的低In组分的量子阱结构太阳能电池外延材料相比,该结构材料具有较小的半峰全宽(FWHM),计算表明:此结构材料的位错密度降低了一个数量级,达到107 cm-2;同时,有源区中的应变弛豫降低了51%;此外,此结构材料的发光强度增强了35%。研究结果表明含有AlGaN双势垒结构的外延材料可以减小有源区的位错密度,降低非辐射复合中心的数目,增大有源区有效光生载流子的数目,为制备高质量太阳能电池提供实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号