首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three artificial amino acids derived from l-serine by replacing the hydroxyl moiety with 1,4,7-triazacyclononane, 1,5,9-triazacyclododecane, and 1,4,7,10-tetraazacyclododecane, respectively, have been connected to the three arms of the tetraamine tris(2-aminoethyl)amine, Tren, to obtain tripodal ligands. They are able to bind up to four metal ions (like CuII and ZnII), three with the polyazamacrocycles and one with the Tren platform. Some of the ZnII complexes of these tripodal ligands proved to be good catalysts for the cleavage of the RNA model substrate 2-hydroxypropyl-p-nitrophenylphosphate (HPNP). Studies of the catalytic activity in the presence of increasing amounts of ZnII show that the complexes represent minimalist examples of metallocatalysts with cooperativity between the metal centers and allosteric control by a metal ion. The Tren binding site constitutes the allosteric regulation unit, while the three ZnII-azacrown complexes provide the cooperative, catalytic site. The allosteric role of the ZnII ion located in the Tren binding site was unambiguously demonstrated by studying the catalytic activity of a derivative unable to complex ZnII in that site. In this case, the cooperativity between the three ZnII ions bound to the peripheral azacrowns was totally suppressed. The kinetic analysis has shown that cooperativity is due to neither the occurrence of general-acid/general-base catalysis nor a decreased binding of the substrate because of the deprotonation of a water molecule bound to the complex but, rather, stabilization of the complexed substrate in its transformation into the transition state.  相似文献   

2.
The peptide sequence AcNH–TEG–Glu-Aib-Trp-AibAib-Trp-AibAib-Ile-Asp–OH (1), designed to display the WWI epitope found near the C-terminus of gp41, an envelope glycoprotein decorating the surface of the HIV-1 virus, has been synthesized and proved to have a relevant content of helical conformation because of the presence of five α-aminoisobutyric acid (Aib) units. Three copies of it have been connected to a tripodal platform based on 2,4,6-triethylbenzene-1,3,5-trimethylamine. The tripodal template 2 is even more structured than 1 thus suggesting a significant interaction between the three sequences connected to the platform. Preliminary inhibition assays of HIV-mediated cell fusion indicated that while the single peptide 1 is inactive within the concentration range of our assay, when it is conjugated to the tripodal platform, it is moderately active. These promising results suggest that our approach constitute a valid alternative to those reported so far.  相似文献   

3.
The fluorescence chemosensor ATMCA has been realised by appending an anthrylmethyl group to an amino nitrogen of TMCA (2,4,6-triamino-1,3,5-trimethoxycyclohexane), a tripodal ligand selective for divalent first-row transition metal ions in water. The ATMCA ligand can act as a versatile sensor for ZnII and CuII ions. Its sensing ability can be switched by simply tuning the operating conditions. At pH 5, ATMCA detects copper(II) ions in aqueous solutions by the complexation-induced quenching of the anthracene emission. Metal ion concentrations < 1 microM can be readily detected and very little interference is exerted by other metal ions. At pH 7, ATMCA signals the presence of ZnII ions at concentrations < 1 microM by a complexation-induced enhancement of the fluorescence. Again the sensor is selective for ZnII over several divalent metal ions, with the exception of CuII, CoII and HgII. Most interestingly, the [ZnII(atmca)]2+ complex can act as a fluorescence sensor for specific organic species, notably selected dicarboxylic acids and nucleotides, by the formation of ternary ligand/zinc/substrate complexes. The oxalate anion is detected in concentrations <0.1 mM; however, no effects on the system's fluorescence is observed in the presence of monocarboxylic acids and long-chain dicarboxylic acids. Among the nucleotides, those containing an imide or amide function are readily detected and an unprecedented high sensitivity for guanine derivatives allows the determination of this nucleotide for 0.05-0.5 mM solutions. Moreover, [ZnII(atmca)]2+ is a very effective and selective sensor in the case of vitamin B13 (orotic acid) in sub-micromolar concentrations. The operative features of the systems investigated are also clearly suitable for intracellular analyses. The factors at the source of organic substrate recognition, here briefly discussed, are of paramount importance for further developments in the applicability of these sensing systems.  相似文献   

4.
The complex formation of Cd(II) with N-donor ligands in dimethylsulfoxide (DMSO) is investigated by means of potentiometry and titration calorimetry. The ligands considered in this work are tripodal polyamines and polypyridines: 2,2′,2″-triaminotriethylamine (TREN), tris(2-(methylamino)ethyl)amine (Me3TREN), tris(2-(dimethylamino)ethyl)amine (Me6TREN), tris[(2-pyridyl)methyl]amine (TPA) and 6,6′-bis-[bis-(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine (BTPA). These ligands are characterized by a systematic modification of the donor groups to relate their structure to the thermodynamics of the complexes formed. The TREN and Me3TREN ligands form highly stable species. The stability of the complex formed with the fully methylated Me6TREN is much lower than with other polyamines and the enthalpic and entropic terms suggest an incomplete coordination to the metal ion. In general, the TPA ligand forms complexes less stable than TREN and Me3TREN as a result of the combination of higher structural rigidity of TPA and lower basicity of pyridine moiety with respect to primary and secondary amines. Pyridine-containing ligands display, in general, a less unfavorable formation entropy than tripodal polyamines here considered. In particular, TPA forms a more stable 1:1 species with respect to Me6TREN due to the entropic term, being the enthalpy less negative. The ligand BTPA is able to form only a monometallic complex, where the metal ion is likely to be encapsulated as indicated by the obtained thermodynamic parameters.  相似文献   

5.
The present study reports the synthesis and rational design of porous structured materials by using a templating method. A tetraethoxysilylated tripodal tetraamine (TREN) was covalently incorporated in a silica framework with a double imprint: A surfactant template and a metal ion imprint. The presence of a cationic surfactant (CTAB) endowed the material with a high porosity, and the tripodal or square‐pyramidal topology of the ligand was preserved thanks to the use of the silylated CuII complex. After removal of the surfactant and de‐metalation, the incorporated tetraamine was quantitatively complexed by CuCl2 and the material has shown after thermal activation that a reversible binding of O2 on the metal ions occurred. This chemisorption process was monitored by UV/Vis and EPR spectroscopies, and the Cu:O2 adduct was postulated to be an end‐on μ‐η11‐peroxodicopper(II) complex bridged by a chloride ion. The CuI‐active species, formed during the activation step, were fully recovered during several O2 binding cycles. The high reactivity of the copper complexes and the room‐temperature stability of the dioxygen adduct were explained by the fine adaptability of the tripodal ligand to different geometries, the confinement of the active sites in the hybrid silica that protect them from degradation by a control of the metal‐ion microenvironment, as well as the short‐range lamellar order of the copper complexes in the framework.  相似文献   

6.
New coordination complexes of the neutral tripodal tetra-amine Me(6)TREN with tBu(3)Ga or tBu(2)Zn have been synthesised and studied with their molecular structures revealing, for the first time, coordination to metal centres via an η(1) or η(2) mode, adding to previously reported η(3) and η(4) ligated examples.  相似文献   

7.
An investigation on the thermodynamics of complex formation between Ag(I) ion and two tripodal ligands tris[(2-pyridyl)methyl]amine (TPA) and 6,6′-bis-[bis-(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine (BTPA) has been carried out in the aprotic solvents dimethylsulfoxide (DMSO) and dimethylformamide (DMF) by means of potentiometry and titration calorimetry. The results for TPA are compared with those already obtained for other aliphatic tripodal polyamines. In general, the TPA ligand forms complexes less stable than 2,2′,2″-triaminotriethylamine (TREN) and tris(2-(methylamino)ethyl)amine (Me3TREN) as a result of the combination of higher structural rigidity of TPA and lower σ-donor ability of pyridinic moieties with respect to primary and secondary amines. The same trend is found if the stability of Ag(I) complex with TPA is compared with that of tris(2-(dimethylamino)ethyl)amine (ME6TREN), despite the pyridinic nitrogen is formally a tertiary one. Theoretical calculations run to explain the reasons of this weaker interaction indicate that this difference is due to solvation, rather than to steric or σ-donor effects. The ligand BTPA is able to form bimetallic species whose relative stability is largely influenced by the different solvation of Ag(I) ion in DMSO and DMF rather than by the difference in the dielectric constants of these two media.  相似文献   

8.
By following a biomimetic design principle, tetravalent scaffolds based on an adamantyl and trisalkylmethyl core structure have been synthesized. These scaffolds have been coupled to three catecholamines, thus resembling the characteristic tripodal recognition motif of many natural metal binders, such as mussel adhesion proteins and siderophores, for example, enterobactin. Besides this tripodal recognition element, our scaffolds provide a fourth position for the conjugation of effector molecules. These effectors can be conjugated through biocompatible conjugation techniques to the scaffold and can be used to tailor the properties of different metal surfaces for a range of applications, for example, in implant engineering. Herein, we describe the synthesis of several tripodal metal binders and their immobilization on TiO(2) surfaces by using a simple dip-coating procedure. Furthermore, we demonstrate the conjugation of our surface binders to the dye eosin Y as an effector molecule by peptide coupling. The resulting surfaces have been analyzed by using ellipsometry, time-of-flight secondary ion mass spectrometry, IR spectroscopy, and contact-angle measurements to confirm the specific loading on TiO(2) films and nanoparticles with our trivalent surface binders. As a proof of concept, we have demonstrated the functionalization of TiO(2) nanoparticles with the eosin Y dye.  相似文献   

9.
Amyloid precursor protein (APP) plays a key role in Alzheimer's disease (AD), although the function of this membrane protein is still unclear. Metal ions are implicated in AD and they also interact with APP. APP possesses a strong ZnII binding site, which is evolutionary conserved. In this paper a synthetic peptide, APP170-188, with a sequence corresponding to the conserved ZnII-binding domain of APP, was synthesised and its metal-binding properties analysed. Titration experiments pointed to the binding of a stoichiometric amount of divalent ions. Further studies indicated that the binding of divalent metals like ZnII, CdII and CoII induces the dimerisation of the peptide. This dimer contains a dinuclear cluster in which the two divalent metals are bridged by two thiolate ligands from cysteine residues. The other two ligands of the tetrahedral coordination sites of each metal ion are terminal thiolate ligands. This structure was supported by the following arguments. The complex formed with CoII presents the characteristic features for tetrahedral tetrathiolate coordination in its UV-visible spectrum. The sequence of APP170-188 contains only three cysteine residues, which is incompatible with a monomeric CoII-APP170-188 complex. EPR measurements of the complex with one equivalent of CoII show almost no signal at 4 K, which is compatible with an antiferromagnetic spin-coupling of the metal ions in a cluster structure. Size-exclusion chromatography indicated that the elution time for the complexes with ZnII and CdII corresponds to the expected molecular weight of a dimer. The circular dichroism (CD) spectrum of the complex with one equivalent of CdII shows a band at 265 nm+, and an ellipticity similar to those observed for similar CdII-thiolate clusters. Possible biological implications of the ZnII binding site and the metal-induced dimerisation are discussed.  相似文献   

10.
Shintaro Iwamoto 《Tetrahedron》2004,60(44):9841-9847
Gemini amphiphiles having two peptide lipid units and a spacer group connected at the polar heads were synthesized. A gemini peptide lipid bearing l-histidyl residues, hydrophobic double-chain segments, and a tri(oxyethylene) spacer performed as an inducer of the reversible assembling of liposomal membranes through ditopic ion recognition toward transition metal ions and alkali metal ions. The vesicular assembling behavior induced by the gemini peptide lipids was sensitive to the structural difference in the amino acid residue and the spacer group of the lipids.  相似文献   

11.
The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed.  相似文献   

12.
Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the hydrophobic-hydrophilic interface largely governs the conformation of peptides. Therefore, the present study implies that special care is needed when interpreting data that may be affected by different amounts or types of interfaces during experimentation.  相似文献   

13.
The complexes of the heptadentate receptor N,N'-bis(benzimidazol-2-ylmethyl)-1,10-diaza-15-crown-5 (L2) with MnII, CoII, NiII, CuII, and ZnII are reported. The X-ray crystal structures of the ZnII and NiII complexes show that whereas the ZnII ion is seven-coordinated in a (distorted) pentagonal-bipyramidal coordination environment, the NiII ion is only six-coordinated in a distorted octahedral coordination environment. Theoretical calculations on the [M(L2)]2+ systems (M = Mn, Co, Ni, Cu, or Zn) performed at the density functional theory (DFT; B3LYP) level have been used to obtain information about the structure and electronic properties of these complexes, as well as to rationalize their preferences for a pentagonal-bipyramidal or an octahedral coordination. We have found that for the MnII, CoII, CuII, and ZnII complexes, geometry optimizations lead systematically to pentagonal-bipyramidal coordination environments around the metal ions. However, for the NiII complex, two minimum-energy conformations were obtained, with the metal ion being in octahedral (o-[Ni(L2)]2+) or pentagonal-bipyramidal (pb-[Ni(L2)]2+) coordination. The stabilization of the octahedral geometry in the NiII complex can be considered as the result of the Jahn-Teller effect operating in pentagonal-bipyramidal geometry, which in an extreme case leads to an octahedral coordination. Spectrophotometric titrations carried out in dimethyl sulfoxide (DMSO) and CH3CN/DMSO (9:1) solutions indicate the following stability sequence for the complexes of L2: CoII approximately NiII > ZnII > MnII. The variations in the geometry and stability of the complexes may be rationalized in terms of the different occupations of the frontier molecular orbitals along the first-row transition-metal series. Finally, a time-dependent DFT approach was used to investigate the absorption spectrum of the [Cu(L2)]2+ complex based on the optimized geometries at the B3LYP level, also confirming a pentagonal-bipyramidal coordination in solution for this compound.  相似文献   

14.
Gas-phase reactions of multiply protonated polypeptides and metal containing anions represent a new methodology for manipulating the cationizing agent composition of polypeptides. This approach affords greater flexibility in forming metal containing ions than commonly used methods, such as electrospray ionization of a metal salt/peptide mixture and matrix-assisted laser desorption. Here, the effects of properties of the polypeptide and anionic reactant on the nature of the reaction products are investigated. For a given metal, the identity of the ligand in the metal containing anion is the dominant factor in determining product distributions. For a given polypeptide ion, the difference between the metal ion affinity and the proton affinity of the negatively charged ligand in the anionic reactant is of predictive value in anticipating the relative contributions of proton transfer and metal ion transfer. Furthermore, the binding strength of the ligand anion to charge sites in the polypeptide correlates with the extent of observed cluster ion formation. Polypeptide composition, sequence, and charge state can also play a notable role in determining the distribution of products. In addition to their usefulness in gas-phase ion synthesis strategies, the reactions of protonated polypeptides and metal containing anions represent an example of a gas-phase ion/ion reaction that is sensitive to polypeptide structure. These observations are noteworthy in that they allude to the possibility of obtaining information, without requiring fragmentation of the peptide backbone, about ion structure as well as the relative ion affinities associated with the reactants.  相似文献   

15.
Surface initiated polymerization of N(isopropylacrylamide) (NIPAM) was performed by controlled radical polymerization on PET track-etched membranes presenting two different pore diameters (narrow pores: ∼80 nm and large pores: ∼330 nm). The opening and closing characteristics of the resulting PNIPAM-g-PET membranes were investigated by conductometric measurements carried out at different temperatures below and above the LCST of PNIPAM and in the presence of different salts. Depending on the membrane pore size, two types of permeation control mechanisms are observed. In large pore membranes, expanded PNIPAM chains conformations result in reduced effective pore size and therefore lower permeabilities relative to collapsed macromolecules chain conformations. In contrast, in narrow pore membranes, the expanded PNIPAM brush presents greater degrees of hydration in the surface layer and therefore gives rise to higher permeabilities than the collapsed conformation. In this situation, the overall permeability is thus comparable to that of a hydrogel membrane.  相似文献   

16.
A new series of tripodal receptors bearing imine linkages have been prepared in high yields, by a single step condensation reaction between tripodal aromatic amines and aldehydes, using zinc perchlorate as a template. The template cation leaves the pseudo cavity after the Schiff base condensation to give metal free multidentate ligands. These products have been characterized by 1H, 13C NMR, IR, elemental analysis, UV-vis absorption spectroscopy and X-ray crystallographic studies. It has been seen that the presence of a coordinating atom such as O, S, and N at position-2 with respect to the carbonyl group, is mandatory for the reaction to proceed. The template reaction has been also successfully employed to synthesize a lariat type coronand by reacting the tripodal amine with a dialdehyde.  相似文献   

17.
Biologists have observed that the presence of divalent metal is essential for the binding of the hormone oxytocin (OT) to its cellular receptor. However, this interaction is not understood on the molecular level. Because conformation is a key factor controlling ligand binding in biomolecule systems, we have used ion mobility experiments and molecular modeling to probe the conformation of the oxytocin-zinc complex. Results show that Zn2+ occupies an octahedral site in the interior of the OT peptide that frees the N-terminus and creates a structured hydrophobic binding site on the peptide exterior; both factors are conducive to binding oxytocin to its receptor.  相似文献   

18.
An open-framework gallophosphate, Ga9(PO4)12[(H3TREN)(H2TREN)3]·xH2O was hydrothermally synthesized at 453 K with tris(2-aminoethyl) amine(TREN) as the organic template and characterized by single-crystal X-ray diffraction. Ga9(PO4)12[(H3TREN)(H2TREN)3]·xH2O crystallized in a cubic space group I43m, with a=1.68552(3) nm and Z=2. The structure contains 12-membered ring channels and supercages of 1.434 nm in diameter, and is an analogue of Al9(PO4)12(C24H91N16)·17H2O. Template-TREN in the supercage was different from triethylenetetraamine(TETA) used in the initial reaction mixture due to the construction transformation. The TETAs transformed into the TRENs due to the low interaction energy between the template and framework. We verified it via energy calculation and liquid state NMR.  相似文献   

19.
We report on the direct observation of key organic template-framework interactions leading to the formation of specific aluminophosphate structures. In particular, we show how MeAPO-34 formation was governed by an interaction between the divalent framework substituted metal ion and the template conformation, while for AlPO-5 the structure formation was determined by the template conformation alone. Understanding such interactions therefore appears to be important for the rationalization of microporous material formation.  相似文献   

20.
A series of iron porphyrins has been synthesized as models of cytochrome c oxidase; their activity as 4e catalysts in the reduction of dioxygen has been studied at pH 7. These compounds have been obtained by grafting very different residues onto the same iron complex, namely tripodal tetraamines, pickets, and straps, in order to change the environment of the metal center. In the case of porphyrins bearing a tripodal cap, the secondary amines have been alkylated with different substituents so as to modify the electronic environment of the distal pocket. Surprisingly, when the iron porphyrin is functionalized with four identical acrylamido pickets, the resulting complex exhibits biomimetic activity in that it catalyzes oxygen reduction with almost no production of hydrogen peroxide. The crystal structure of the redox-inactive zinc(II) analogue is reported; this shows how the metal influences the spatial arrangement of the four pickets through axial coordination and hydrogen bonding. Even a bis-strapped iron porphyrin, for which no dimerization or self-aggregation can occur at the electrode surface, acts as a 4e catalyst for O2 reduction. It is thus demonstrated that at pH close to physiological values, the iron porphyrin is an intrinsically efficient catalyst for the reduction of oxygen to water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号