首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

2.
Xi Chen 《Journal of luminescence》2011,131(12):2697-2702
In this work, we report preparation, characterization and luminescent mechanism of a phosphor Sr1.5Ca0.5SiO4:Eu3+,Tb3+,Eu2+ (SCS:ETE) for white-light emitting diode (W-LED)-based near-UV chip. Co-doped rare earth cations Eu3+, Tb3+ and Eu2+ as aggregated luminescent centers within the orthosilicate host in a controlled manner resulted in the white-light phosphors with tunable emission properties. Under the excitation of near-UV light (394 nm), the emission spectra of these phosphors exhibited three emission bands: one broad band in the blue area, a second band with sharp lines peaked in green (about 548 nm) and the third band in the orange-red region (588-720 nm). These bands originated from Eu2+ 5d→4f, Tb3+5D47FJ and Eu3+5D07FJ transitions, respectively, with comparable intensities, which in return resulted in white light emission. With anincrease of Tb3+ content, both broad Eu2+ emission and sharp Eu3+ emission increase. The former may be understood by the reduction mechanism due to the charge transfer process from Eu3+ to Tb3+, whereas the latter is attributed to the energy transfer process from Eu2+ to Tb3+. Tunable white-light emission resulted from the system of SCS:ETE as a result of the competition between these two processes when the Tb3+ concentration varies. It was found that the nominal composition Sr1.5Ca0.5SiO4:1.0%Eu3+, 0.07%Tb3+ is the optimal composition for single-phased white-light phosphor. The CIE chromaticity calculation demonstrated its potential as white LED-based near-UV chip.  相似文献   

3.
Ultrafine particles of BaMgAl10O17:Eu2+ (BAM) phosphor were synthesized by a solid-state combustion reaction in a powder bed of 0.9BaCO3+MgO+5Al2O3+0.05Eu2O3+k(KClO3+1.5C) composition. A large exothermic reaction of the mixture (KClO3+1.5C) leads to a self-sustaining combustion mode. Under optimized combustion conditions, the product consisted of BAM powder and KCl was obtained. BAM ultrafine particles resulting from the combustion process were easily obtained by simply washing the salt by-product with water. Combustion-processed BAM phosphor shows a homogeneous grain size of 100-500 nm, good dispersity, regular morphology, and improved luminescence properties.  相似文献   

4.
A yellow phosphor, Sr3SiO5:Eu2+, was synthesized by a high temperature solid-state method. Sr3SiO5:Eu2+ exhibits a single yellow emission under the blue radiation excitation. However, Sr3SiO5:Eu2+ shows a two-peak emission under the ultraviolet radiation excitation when Eu2+ doping content is less than 0.01 mol. Moreover, the blue emission disappears and the yellow emission reaches the peak value when Eu2+ doping content is 0.01 mol. Namely, the energy transfer takes place between the Eu2+ activators, which is located at two different crystallographic sites in the Sr3SiO5. And the energy transfer mechanism is the dipole-dipole interaction.  相似文献   

5.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

6.
A red-emitting phosphor material, Gd2Ti2O7:Eu3+, V4+, by added vanadium ions is synthesized using the sol-gel method. Phosphor characterization by high-resolution transmission electron microscopy shows that the phosphor possesses a good crystalline structure, while scanning electron microscopy reveals a uniform phosphor particle size in the range of 230-270 nm. X-ray photon electron spectrum analysis demonstrates that the V4+ ion promotes an electron dipole transition of Gd2Ti2O7:Eu3+ phosphors, causing a new red-emitting phenomenon, and CIE value shifts to x=0.63, y=0.34 (a purer red region) from x=0.57, y=0.33 (CIE of Gd2Ti2O7:Eu3+). The optimal composition of the novel red-emitting phosphor is about 26% of V4+ ions while the material is calcinated at 800  °C. The results of electroluminescent property of the material by field emission experiment by CNT-contained cathode agreed well with that of photoluminescent analysis.  相似文献   

7.
In this study, green-emitting Na2CaPO4F:Eu2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl10O17:Eu2+, green-emitting Na2CaPO4F:0.02 Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.  相似文献   

8.
A blue phosphor, BaMgAl10O17:Eu2+, has been synthesized in the furnace at a temperature of 500 °C by solution combustion method. The formation of the as-prepared BaMgAl10O17:Eu2+ phosphor was confirmed by the powder X-ray diffraction technique. The EPR spectrum exhibited an intense resonance signal centered at g=4.63 at 150 mT along with a number of resonances in the vicinity of g>2.0 and g<2.0. The number of spins participating in resonance (N) and the susceptibility (c) for the resonance signal at g=4.63 have been calculated as a function of temperature. The excitation spectrum of BaMgAl10O17:Eu2+ phosphor showed a strong peak near 336 nm (4f7 (8S)→5d1(t2g) transition) with a staircase like structure in the region 376-400 nm owing to crystal field splitting of the Eu2+ d-orbital. The 336 nm excitation produced a broad blue emission at 450 nm corresponding to 4f65d→4f7 transition. PL studies reveal the two emission centers one at 450 nm and the other at 490 nm in this phosphor.  相似文献   

9.
A series of Eu2+-activated Ba2Mg(BO3)2 yellow phosphors were prepared by a high temperature solid-state reaction. The phosphor emits intense yellow light under near ultraviolet excitation. Large Stokes shift can be attributed to the asymmetric nature of the Eu site and the lack of rigidity in the host. The concentration self-quenching mechanism of Ba2Mg(BO3)2:Eu2+ is d-d interaction and the critical transfer distance is calculated to be about 12.29 Å. Prototype light-emitting diodes were fabricated by coating the Ba2Mg(BO3)2:0.07Eu2+ phosphor onto ∼370 nm-emitting InGaN chips. The LEDs exhibit intense yellow-emitting under a forward bias of 20 mA. The results indicate that Eu2+-activated Ba2Mg(BO3)2 is a candidate as a yellow component for fabrication of near-UV white light-emitting diodes.  相似文献   

10.
周美娇  张加驰  王育华 《物理学报》2012,61(7):74103-074103
对节能灯用BaMgAl10O17: Eu2+,Mn2+荧光粉的热劣化和紫外辐照劣化机理进行了对比研究. 发现热处理和紫外辐照处理均对BaMgAl10O17: Eu2+,Mn2+产生明显的发光劣化作用. 研究结果表明:热劣化主要涉及到Eu2+ 的氧化及其格位偏移, 而紫外辐照劣化与上述过程无关. 紫外辐照劣化主要源自高能紫外辐照使Eu2+ 处于更加不稳定的状态, 从而降低Eu2+ 的直接吸收和发射强度.  相似文献   

11.
Eu2+-activated strontium–barium silicate, SrBaSiO4:Eu2+, which is an intermediate phase between Sr2SiO4 and Ba2SiO4, was synthesized by a solid-state reaction. The synthesized phosphor was efficiently excited by a broad spectral range of near UV between 300 and 450 nm, and exhibited a strong and wide green emission. As the doped Eu2+ concentration increased from 0.005 to 0.18 (molar ratio), the emission wavelength shifted from 509 to 521 nm, and this red-shift phenomenon was discussed through a band-gap model. The concentration quenching mechanism was calculated to be a dipole–quadrupole interaction. It showed good thermal stability with T1/2 of 170 °C and high internal quantum efficiency (78%). A green LED was fabricated with SrBaSiO4:Eu2+and a 395 nm-emitting InGaN chip and it showed a superior current tolerant property. All the results indicate that this phosphor is a good candidate as green component in fabrication of phosphor-converted white LEDs.  相似文献   

12.
A novel long-lasting phosphorescence phosphor, Mn2+-activated Mg2SnO4, has been synthesized and its optical properties have been investigated. The Mg2SnO4:Mn2+ emits green light with high luminance, upon UV irradiation, centered at 499 nm from the spin forbidden transitions of the d-electrons in Mn2+ ions. The CIE chromaticity coordinates of the Mg2SnO4:Mn2+ phosphor are x=0.0875 and y=0.6083 under 254 nm UV excitation. The phosphorescence can be observed by the naked eyes (0.32 mcd/m2) in the dark clearly for over 5 h after the 5 min UV irradiation. Thermoluminescence has been studied and the mechanism of the long-lasting phosphorescence has been discussed.  相似文献   

13.
Spherical SiO2 particles have been coated with Zn2SiO4:Eu3+ phosphor layers by a Pechini sol-gel process. The microstructure and luminescent properties of the obtained Zn2SiO4:Eu3+@SiO2 particles were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and lifetime. The results demonstrate that the Zn2SiO4:Eu3+@SiO2 particles, which have regular and uniform spherical morphology, emitted an intensive red light emission at 613 nm under excitation at 395 nm. Besides, the effects of the Eu3+ concentration, annealing temperature and charge compensators of Li+ ions on the PL emission intensities were investigated in detail.  相似文献   

14.
Luminescence efficiency of self-activated CaWO4 under 147 nm vacuum ultraviolet (VUV) radiation excitation is about 90% of that of BaMgAl10O17:Eu2+ (BAM), the commercial blue plasma display panel (PDP) phosphor. However, the color purity and the particle size of the former needs substantial modification before it can be considered for application in PDP. CaWO4:Tm exhibits Tm3+ emission peaks in the blue region due to energy transfer from WO4 to Tm3+ ions but the overall emission intensity under 147 nm excitation is reduced when compared to that of CaWO4.  相似文献   

15.
In this paper, the Sr3Y2 (BO3)4:Eu3+ phosphor was synthesized by high temperature solid-state reaction method and the luminescence characteristics were investigated. The emission spectrum exhibits one strong red emission at 613nm corresponding to the electric dipole 5D0--7F2 transition of Eu3+ under 365nm excitation, this is because Eu3+ substituted for Y3+ occupied the non-centrosymmetric position in the crystal structure of Sr3Y2 (BO3)4. The excitation spectrum indicates that the phosphor can be effectively excited by ultraviolet (254nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu3+ concentration on the red emission of Sr3Y2 (BO3)4:Eu3+ was measured, the result shows that the emission intensities increase with increasing Eu3+ concentration, then decrease. The Commission Internationale del'Eclairage chromaticity (x, y) of Sr3Y2(BO3)4:Eu3+ phosphor is (0.640,0.355) at 15 mol% Eu3+.  相似文献   

16.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

17.
Sr6BP5O20:Eu2+ phosphor was prepared by the solid-state reaction method under a weak reductive atmosphere and the photoluminescence properties were studied systematically. The bluish-green emission band of Sr6BP5O20:Eu2+ phosphor is peaking at 475 nm, and the excitation bands are broad with peaks at about 290 and 365 nm with a shoulder around 390 nm, respectively. By combining with Ga(In)N-based near-ultraviolet LEDs, a bluish-green LED was fabricated based on the Sr6BP5O20:Eu2+ phosphor, and a novel intense white LED was fabricated based on the bluish-green phosphor Sr6BP5O20:Eu2+ and the red phosphor (Sr,Ca)5(PO4)3Cl:Eu2+,Mn2+. When this two-phosphor white LED is operated under 20-mA forward-bias current at room temperature, the Commission Internationale de l’Eclairage(CIE) chromaticity coordinates (x,y), the correlated color temperature Tc, and the color rendering index Ra are calculated to be (0.3281,0.3071), 5687 K, and 87.3, respectively. The dependence of the bluish-green and two-phosphor white LEDs on different forward-bias currents from 5 mA to 50 mA shows a similar behavior. As the current increases, the relative intensity simultaneously increases. The CIE chromaticity coordinates (x,y) of the two-phosphor white LED tend to decrease. Consequently, the correlated color temperature Tc increases from 3800 K to 9400 K and the color rendering index Ra of the two-phosphor white LED increases from 83.4 to 91.8 simultaneously. PACS 07.60.-j; 42.70.-a; 71.55.Eq  相似文献   

18.
使用基于密度泛函理论的CASTEP软件计算了BAM:Eu2+(BaMgAl10O17:Eu2+)荧光粉在SiN掺杂前后的能带、态密度、吸收光谱和Mulliken布居.Eu2+处于BR位置光吸收更强;SiN掺杂使处于BR位置的Eu2+的数量上升,而处于mO位置的Eu2+的数量下降,抵消了SiN掺杂降低Eu的态密度对光谱的影响.所以适量掺杂的SiN提高了BAM:Eu2+荧光粉的吸收发射光谱强度.Si-N键和Eu-N键的Mulliken布居数分别高于Al-O键和Eu-O键, 说明Si-N键和Eu-N键的共价性分别强于Al-O键和Eu-O键.发光中心Eu2+局域结构共价性的增强降低了BAM:Eu2+镜面层的活性,这是SiN掺杂提高BAM:Eu2++荧光粉光学稳定性的主要原因.  相似文献   

19.
Host-lattice emission, energy transfer and degradation processes are characterized in undoped and Eu-doped BaMgAl10O17. Undoped BaMgAl10O17 exhibits a broad emission centered at 265 nm when excited at wavelengths shorter than 190 nm. This emission is assigned to exciton recombination at Ba-O groups in the cation layer of the lattice. The emission exhibits excellent overlap with the excitation band of Eu2+ in this host, providing a means of host-to-activator energy transfer in the doped phosphor. The exciton emission is relatively stable to thermal damage, but undergoes a peak shift and significant decrease in intensity after exposure to VUV radiation. Heating of VUV-damaged materials in air leads to some repair of the spectral properties.  相似文献   

20.
Eu2+-doped Sr3Al2O6 (Sr3−xEuxAl2O6) was synthesized by a solid-state reaction under either H2 and N2 atmosphere or CO atmosphere. When H2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu2+ ion. The relationship between the emission wavelengths and the occupation of Eu2+ at different crystallographic sites was studied. The preferential substitution of Eu2+ into different Sr2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号