首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel ratiometric fluorescent probe for palladium species was synthesized based on an allyl carbonate group, a novel reaction site, and a hemicyanine dye. The probe displays relatively rapid response, high selectivity, and anti-disturbance toward palladium in HEPES buffers without additional reagents. The detection mechanism, palladium triggers the cleavage of allyl carbonate in the probe and then decarboxylation of the product to induce the ratiometric fluorescence response, was verified using UV–vis and mass spectrometry analysis. The probe was successfully applied for ratiometric fluorescent detection of palladium in tap water, river water, and in fetal bovine serum.  相似文献   

2.
Zeng X  Zhang X  Zhu B  Jia H  Li Y  Xue J 《The Analyst》2011,136(19):4008-4012
A 4-aminonaphthalimide-based ratiometric fluorescent probe 1 employing the internal charge transfer (ICT) mechanism was designed and synthesized to detect bovine serum albumin (BSA). The interaction of 1 and BSA was investigated by fluorescence and UV-vis absorption spectroscopy. Upon treatment with BSA, the probe successfully exhibited a ratiometric fluorescent response at 540 nm and 480 nm. The fluorescent intensity ratio at 540 nm and 480 nm (F(540)/F(480)) increases linearly with BSA concentration in the range of 0-75.0 μg mL(-1) and the detection limit was about 2.4 ng mL(-1). Our strategy is expected to provide a methodology to quantify BSA either by a normal or by a ratiometric and colorimetric way with high sensitivity.  相似文献   

3.
Mitochondrial polarity strongly influences the intracellular transportation of proteins and interactions between biomacromolecules. The first fluorescent probe capable of the ratiometric imaging of mitochondrial polarity is reported. The probe, termed BOB, has two absorption maxima (λabs=426 and 561 nm) and two emission maxima—a strong green emission (λem=467 nm) and a weak red emission (642 nm in methanol)—when excited at 405 nm. However, only the green emission is markedly sensitive to polarity changes, thus providing a ratiometric fluorescence response with a good linear relationship in both extensive and narrow ranges of solution polarity. BOB possesses high specificity to mitochondria (Rr=0.96) that is independent of the mitochondrial membrane potential. The mitochondrial polarity in cancer cells was found to be lower than that of normal cells by ratiometric fluorescence imaging with BOB. The difference in mitochondrial polarity might be used to distinguish cancer cells from normal cells.  相似文献   

4.
Steady-state and time-resolved fluorescence techniques have been used to study the photophysical properties of the fluorescent BODIPY-derived dye 3-{2-[4-(dimethylamino)phenyl]ethenyl}-4,4-difluoro-8-(4-methoxyphenyl)-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene. This compound has been synthesized via a microwave-assisted condensation of p-N,N-dimethylaminobenzaldehyde with the appropriate 1,3,5,7-tetramethyl substituted borondipyrromethene unit. The fluorescence properties of the dye are strongly solvent dependent: increasing the solvent polarity leads to lower fluorescence quantum yields and lifetimes, and the wavelength of maximum fluorescence emission shifts to the red. The Catalán solvent scales are found to be the most suitable for describing the solvatochromic shifts of the fluorescence emission. These are dominated by polarity/polarizability effects, as confirmed by quantum-chemical calculations performed in the dielectric continuum approximation. Fluorescence decay profiles of the dye can be described by a single-exponential fit in most solvents investigated, while two decay times are found in alcohols. The dye undergoes a reversible protonation-deprotonation reaction in the acidic pH range with a pK(a) of 2.25 in acetonitrile solution. Fluorimetric titrations as a function of pH produce fluorescence emission enhancements at lower pH. The fluorescence excitation spectra show a hypsochromic shift from 600 nm for the neutral amine to 553 nm for the ammonium form, so that ratiometric measurements can be used to determine pK(a).  相似文献   

5.
We systematically examined the mechanism of the solvent polarity dependence of the fluorescence ON/OFF threshold of the BODIPY (boron dipyrromethene) fluorophore and the role of photoinduced electron transfer (PeT). In a series of BODIPY derivatives with variously substituted benzene moieties at the 8-position, the oxidation potential of the benzene moiety became more positive and the reduction potential of the BODIPY fluorophore became more negative as the solvent polarity was decreased; consequently, the free energy change of PeT from the benzene moiety becomes larger in a more nonpolar environment. Utilizing this finding, we designed and synthesized a library of probes in which the threshold of fluorescence ON/OFF switching corresponds to different levels of solvent polarity. These environment-sensitive probes were used to examine bovine serum albumin (BSA) and living cells. The polarity at the surface of albumin was concluded to be similar to that of acetone, while the polarity of the internal membranes of HeLa cells was similar to that of dichloromethane.  相似文献   

6.
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells.  相似文献   

7.
Changes in polarity at the immediate binding site in protein bovine serum albumin (BSA) produces distinct changes in the solvent polarity-dependent emission band of fluorescence probe E-3-(4-dimethylamino-naphthalen-1-yl)-acrylic acid. Steady-state spectroscopy and time-resolved spectroscopy have been used to investigate this binding process. Attaching the probe to BSA and then monitoring its spectral changes with increasing urea concentration and raising temperature has also tracked the denaturation of BSA chemically and thermally. The polarity of the microenvironment was investigated employing the Reichardt ET(30) scale. Fluorescence anisotropy, red edge excitation shifts and acrylamide-induced quenching of fluorescence have been exploited to gain better insight into this binding process.  相似文献   

8.
A number of diseases have been linked to abnormal conformation of albumin, a major extracellular protein in blood. Current protein structural analysis requires pure isolated samples, thereby limiting their use for albumin analysis in blood. In this study, we report a new approach for high-throughput structure-related analysis of albumin by using the fluorescence lifetime properties of near-infrared (NIR) polymethine dyes. Based on molecular modeling, polymethine dyes are bound to two binding sites with different polarities on albumin. As a result, an NIR molecular probe exhibits two distinct lifetimes with two corresponding fluorescent fractional contributions. The distribution of fractional contributions along with individual fluorescence lifetimes represents unique parameters for characterizing albumin architecture by ratiometric analysis. After screening a small library of NIR polymethine dyes, we identified and used a polymethine dye with optimal fluorescence lifetime properties to assess structure-related differences in commercially available bovine serum albumin as model systems. The results show that changes in the lifetime of NIR dyes reflect the perturbation of the tertiary structures of albumin and that albumin prepared by different methods has slightly altered tertiary structures. Because of the reduced absorption of light by blood in the NIR region, the method developed can be used to determine structural changes in albumin in whole blood without prior isolation of the pure protein.  相似文献   

9.
构建了一种新型免标记的双发射荧光比率核酸探针(GelRed/[G40]/Tb^3+)并用于Ag+的检测。对于GelRed/[G40]/Tb^3+探针,GelRed作为一种核酸染料嵌入到单链DNA-[G40]中,形成的GelRed/[G40]作为稳定的内置参照标准,在激发波长290 nm处,发射荧光强度固定不变的红色荧光(发射波长为635 nm),而[G40]/Tb^3+作为敏感的响应信号,随着Ag^+浓度的增加,产生的绿色荧光逐渐增强(发射波长为545 nm),[G40]/Tb3+与GelRed/[G40]发射的荧光强度比值也发生相应的改变,从而实现对Ag^+的定量检测。在优化的实验条件下,[G40]/Tb^3+与GelRed/[G40]荧光强度比值和Ag^+浓度在0~7.5μmol/L的范围内具有较好的线性关系,Ag^+检出限为0.156μmol/L。本传感器在10 min内就可完成对Ag^+的分析。方法已用于自来水样中Ag^+的检测,与ICP-MS法检测结果一致。  相似文献   

10.
We report on the emission spectra and emission quantum yields of a newly synthesized hypocrellin dye, Z‐demethoxy‐ 2,3‐ethylenediamino hypocrellin B (EDAHB), and its parent HB in different solvents of varying polarity. Our results demonstrate that EDAHB is one of the few dyes that exhibit highly solvent polarity‐dependent fluorescence in the useful region (680–730 nm). Therefore, it offers some applications in the biomedical field as a fluorescent probe molecule. The solvatochromic effect of EDAHB is proposed to be due to a distinct change in the dipole moment of the dye on excitation. A photoinduced intramolecular proton transfer and a photoinduced intramolecular electron transfer process are considered relevant for the fluorescence properties of HB and EDAHB, respectively.  相似文献   

11.
A new pH and metal ion-responsive BODIPY-based fluorescent probe with an aza crown ether subunit has been synthesized via condensation of 4-(1,4,7,10-tetraoxa-13-aza-cyclopentadec-13-yl)-benzaldehyde with the appropriate 1,3,5,7-tetramethyl substituted boron dipyrromethene moiety. Steady-state and time-resolved fluorometries have been used to study the spectroscopic and photophysical characteristics of this probe in various solvents. The fluorescence properties of the dye are strongly solvent dependent: increasing the solvent polarity leads to lower fluorescence quantum yields and lifetimes, and the wavelength of maximum fluorescence emission shifts to the red. The Catalan solvent scales are found to be the most suitable for describing the solvatochromic shifts of the fluorescence emission. Fluorescence decay profiles of the dye can be described by a single-exponential fit in nonprotic solvents, whereas two decay times are found in alcohols. Protonation as well as complex formation with several metal ions are investigated in acetonitrile as solvent via fluorometric titrations. The aza crown ether dye undergoes a reversible (de)protonation reaction (pKa = 0.09) and shows a approximately 50 nm blue shift in the excitation spectra and a 10-fold fluorescence increase upon protonation. The compound also forms 1:1 complexes with several metal ions (Li(+), Na(+), Mg(2+), Ca(2+), Ba(2+), Zn(2+)), producing large blue shifts in the excitation spectra and significant cation-induced fluorescence amplifications.  相似文献   

12.
Wang M  Mei Q  Zhang K  Zhang Z 《The Analyst》2012,137(7):1618-1623
Here we report that the dual fluorescence emissions from protein-gold (Au) nanoclusters can greatly be modulated by metal ions and the resultant fluorescence ratiometric responses provide a novel sensory method for the identification of amino acids. The protein-gold (Au) nanoclusters were simply synthesized by the reduction of chloroauric acid with bovine serum albumin (BSA), which exhibit dual emissions: the blue at 425 nm from the oxides of BSA, and the red at 635 nm from Au nanoclusters. It has been demonstrated that different metal ions react with BSA-Au nanoclusters and thus greatly affect the two emissions in different ways by fluorescence enhancement or quenching. Interestingly, the addition of amino acids leads to fluorescence ratiometric changes through the interactions with the bound metal ions. When BSA-Au nanocluster probes modulated by four different metal ions were used together to construct a sensor array, different amino acids were clearly discriminated by the distinctive patterns of four ratiometric fluorescence responses. Results and methods reported here provide a unique strategy for the determination of amino acids.  相似文献   

13.
A colorimetric and ratiometric fluorescent thiol probe was devised with diketopyrrolopyrrole (DPP) fluorophore. The probe gives absorption and emission at 523 and 666 nm, respectively. In the presence of thiols, such as cysteine, the absorption and emission band shifted to 479 and 540 nm, respectively. Correspondingly, the color of the probe solution changed from purple to yellow, and the fluorescence changed from red to yellow. The emission intensity at 540 nm was enhanced by 140-fold. The Stokes shift of probe 1 (107 nm) is much larger than the unsubstituted DPP fluorophore (56 nm). Mass spectral analysis demonstrated that besides the expected Michael addition of thiols to the C═C bonds, the CN groups of the malonitrile moieties also react with thiols to form 4,5-dihydrothiazole structure. Probe 1 was used for fluorescence imaging of intracellular thiols. In the presence of thiols, both the green and red channel of the microscopy are active. With removal of the intracellular thiols, signal can only be detected through the red channel; thus, ratiometric bioimaging of intracellular thiols was achieved. The ratiometric response of probe 1 was rationalized by DFT calculations. Our complementary experimental and theoretical studies will be useful for design of ratiometric/colorimetric molecular probes.  相似文献   

14.
BODIPY-based hydroxyaryl derivatives as fluorescent pH probes   总被引:3,自引:0,他引:3  
[structures: see text] Seven new 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes with phenolic or naphtholic subunits on position 8 and with substituents having different electron driving forces on positions 3 and 5 were synthesized. Their absorption and steady-state fluorescence properties were investigated as a function of solvent. The novel compounds, with the exception of 4,4-difluoro-8-(4-hydroxyphenyl)-3,5-bis-(4-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene, are characterized by absorption maxima in the range 493-515 nm and small (400-600 cm(-1)) Stokes shifts. The exceptional dye has absorption maxima in the 570-580 nm region and fluorescence emission maxima around 610-620 nm, depending on the solvent. In aqueous solution, the dyes show a large fluorescent enhancement upon increasing the acidity of the solution. They can be used in aqueous solution as fluorescent pH probes excitable with visible light, with pKa values ranging from 7.5 to 9.3, depending on the substitution pattern on positions 3, 5, and 8.  相似文献   

15.
A novel HBT-hemicyanine hybrid was prepared. This hybrid not only displays a large red-shifted (Δλ = 125 nm) emission compared to the well known ESIPT dye HBT, but also can be used as a new probe for rapid, colorimetric and ratiometric fluorescent detection of bisulfite with high selectivity and sensitivity in aqueous solution. The detection limit of this probe for HSO3 was calculated to be about 56 nM with a linear range of 0–25 μM. The potential application of this probe was exampled by detection of bisulfite in real food samples and living cells. Overall, this work not only provided a new ratiometric sensing platform, but also provided a new promising colorimetric and ratiometric fluorescent probe for bisulfite.  相似文献   

16.
We have synthesized a new environment-sensitive fluorophore, 6-N,N-dimethylamino-2,3-naphthalimide (6DMN). This chromophore exhibits valuable fluorescent properties as a biological probe with emission in the 500-600 nm range and a marked response to changes in the environment polarity. The 6DMN fluorescence is red-shifted in polar protic environments, with the maximum emission intensity shifting more than 100 nm from 491 nm in toluene to 592 nm in water. Additionally, the fluorescence quantum yield decreases more than 100-fold from chloroform (Phi = 0.225) to water (Phi = 0.002). The scope and applications of the 6DMN probe are expanded with the synthesis of an Fmoc-protected amino acid derivative (5), which contains the fluorophore. This unnatural amino acid has been introduced into several peptides, demonstrating that it can be manipulated under standard solid-phase peptide synthesis conditions. Peptides incorporating the new residue can be implemented for monitoring protein-protein interactions as exemplified in studies with Src homology 2 (SH2) phosphotyrosine binding domains. The designed peptides exhibit a significant increase in the quantum yield of the long wavelength fluorescence emission band (596 nm) upon binding to selected SH2 domains (e.g., Crk SH2, Abl SH2, and PI3K SH2). The peptides can be used as ratiometric sensors, since the short wavelength band (460 nm) was found almost invariable throughout the titrations.  相似文献   

17.
The sensitivity as well as dynamic range of a ratiometric probe is determined by the ratio of emission intensities at two wavelengths. Thus, it is highly desirable to acquire a large ratiometric fluorescence response at two wavelengths. However, ratiometric fluorescent signals are intrinsic characteristics of the particular probe-analyte interactions. The design for fluorescent probes with a large ratiometric signal remains a challenging task. There is still a lack of a proper approach to enhance the ratiometric fluorescence response for fluorescent chemodosimeters. Herein, we introduced a novel strategy to increase the emission ratios of a chemodosimeter via modulation of intramolecular charge transfer.  相似文献   

18.
Synthesis of a new coumarin-triazole-based dye and its photophysical parameters such as absorption, fluorescence emission, and fluorescence quantum yield were investigated. Studies have shown that the present dye has symmetry with a mirror image, especially in the ethanol solvent, with respect to the absorption and fluorescence spectra. As a result of the UV-vis and fluorescence spectroscopy techniques used, it was determined that absorption and emission spectra were shifted to the red with increasing solvent polarity. In addition, the spectral data of the synthesized compound exhibited that the stokes shifts are small, usually less than 50 nm, and the quantum yields are significantly high. In accordance with the results obtained, it can be stated that this novel dye synthesized here can offer an insight into application in sensor applications as analytical or biosensors, optoelectronic devices, and medicine industry.  相似文献   

19.
Tamás Kálai 《Tetrahedron》2006,62(44):10352-10360
New, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye based thiol-reactive fluorescent label, fluorescent amino acid, and fluoroionophore compounds with 540-560 nm emission are described. Combination of a BODIPY dye with a nitronyl nitroxide or an imino nitroxide or a bifunctional pyrroline nitroxide furnished a nitric oxide, a redox sensitive molecule and a double (spin and fluorescence) label, respectively.  相似文献   

20.
The development of a dual probe that provides ratiometric measurements of fluid viscosity is described. The design is based on coupling of a primary fluorophore with viscosity-independent fluorescence emission (blue unit) with a secondary fluorophore that exhibits viscosity-sensitive fluorescent emission quantum yield (red unit). Excitation of the secondary fluorophore can be achieved via Resonance Energy Transfer. The ratio of the fluorescence emission of these fluorophores provides an accurate, ratiometric measurement of solvent viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号