首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a unified policy iteration approach is presented for the optimal control problem of stochastic system with discounted average cost and continuous state space. The approach consists of temporal difference learning-based potential function approximation algorithms and performance difference formula-based policy improvement. The approximation algorithms are derived by solving the Poisson equation-based fixed-point equation, which can be viewed as continuous versions of least squares policy evaluation algorithm and least squares temporal difference algorithm. The simulations are provided to illustrate the effectiveness of the approach.  相似文献   

2.
邵新慧  祁猛 《计算数学》2022,44(2):206-216
多重线性系统在当今的工程计算和数据挖掘等领域有很多实际应用,许多问题可以转化为多重线性系统求解问题.在本文中,我们首先提出了一种新的迭代算法来求解系数张量为M-张量的多重线性系统,在此基础上又提出了一种新的改进算法,并对两种算法的收敛性进行了分析.数值算例的结果表明,本文提出的两种算法是有效的并且改进算法的迭代时间更少.  相似文献   

3.
Determining discrete time-cost tradeoffs in project networks allows for the control of the processing time of an activity via the amount of non-renewable resources allocated to it. Larger resource allocations with associated higher costs reduce activities’ durations. Given a set of execution modes (time-cost pairs) for each activity, the discrete time-cost tradeoff problem (DTCTP) involves selecting a mode for each activity so that either: (i) the project completion time is minimized, given a budget, or (ii) the total project cost is minimized, given a deadline, or (iii) the complete and efficient project cost curve is constructed over all feasible project durations. The DTCTP is a problem with great applicability prospects but at the same time a strongly N P{\mathcal N}\,P-hard optimization problem; solving it exactly has been a real challenge. Known optimal solution methodologies are limited to networks with no more than 50 activities and only lower bounds can be computed for larger, realistically sized, project instances. In this paper, we study a path-based approach to the DTCTP, in which a new path-based formulation in activity-on-node project networks is presented. This formulation is subsequently solved using an exact cutting plane algorithm enhanced with speed-up techniques. Extensive computational results reported for almost 5,000 benchmark test problems demonstrate the effectiveness of the proposed algorithm in solving to optimality for the first time some of the hardest and largest instances in the literature. The promising results suggest that the algorithms may be embedded into project management software and, hence, become a useful tool for practitioners in the future.  相似文献   

4.
5.
This paper proposes a single sample path-based sensitivity estimation method for discrete event systems. The method employs two major techniques: uniformization and importance sampling. By uniformization, steady-state performance measures can be estimated via the transition matrix of the embedded Markov chain in the uniformized process. The sensitivity of a transition matrix is obtained by applying importance sampling to an ensemble average of sample paths. The algorithm developed for this method is easy to be implemented; the method applies to more systems than infinitesimal perturbation analysis.  相似文献   

6.
We implemented five conversions of simulated annealing (SA) algorithm from sequential-to-parallel forms on high-performance computers and applied them to a set of standard function optimization problems in order to test their performances. According to the experimental results, we eventually found that the traditional approach to parallelizing simulated annealing, namely, parallelizing moves in sequential SA, difficultly handled very difficult problem instances. Divide-and-conquer decomposition strategy used in a search space sometimes might find the global optimum function value, but it frequently resulted in great time cost if the random search space was considerably expanded. The most effective way we found in identifying the global optimum solution is to introduce genetic algorithm (GA) and build a highly hybrid GA+SA algorithm. In this approach, GA has been applied to each cooling temperature stage. Additionally, the performance analyses of the best algorithm among the five implemented algorithms have been done on the IBM Beowulf PCs Cluster and some comparisons have been made with some recent global optimization algorithms in terms of the number of functional evaluations needed to obtain a global minimum, success rate and solution quality.  相似文献   

7.
Global communication requirements and load imbalance of some parallel data mining algorithms are the major obstacles to exploit the computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication cost in parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operation which hinders the scalability of the approach. This work studies a different parallel formulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature of the centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means of multi-dimensional binary search trees. The approach can also be extended to accommodate an approximation error which allows a further reduction of the communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing elements.  相似文献   

8.
In spite of the recent progress in fractional programming, the sum-of-ratios problem remains untoward. Freund and Jarre proved that this is an NP-complete problem. Most methods overcome the difficulty using the deterministic type of algorithms, particularly, the branch-and-bound method. In this paper, we propose a new approach by applying the stochastic search algorithm introduced by Birbil, Fang and Sheu to a transformed image space. The algorithm then computes and moves sample particles in the q − 1 dimensional image space according to randomly controlled interacting electromagnetic forces. Numerical experiments on problems up to sum of eight linear ratios with a thousand variables are reported. The results also show that solving the sum-of-ratios problem in the image space as proposed is, in general, preferable to solving it directly in the primal domain.  相似文献   

9.
Systems with vacations are usually modeled and analyzed by queueing theory, and almost all works assume that the customer source is infinite and the arrival process is Poisson. This paper aims to present an approach for modeling and analyzing finite-source multiserver systems with single and multiple vacations of servers or all stations, using the Generalized Stochastic Petri nets model. We show how this high level formalism, allows a simple construction of detailed and compact models for such systems and to obtain easily the underlying Markov chains. However, for real vacation systems, the models may have a huge state space. To overcome this problem, we give the algorithms for automatically computing the infinitesimal generator, for the different vacation policies. In addition, we develop the formulas of the main exact stationary performance indices. Through numerical examples, we discuss the effect of server number, vacation rate and vacation policy on the system’s performances.  相似文献   

10.
Classes of integer Abaffy–Broyden–Spedicato (ABS) methods have recently been introduced for solving linear systems of Diophantine equations. Each method provides the general integer solution of the system by computing an integer solution and an integer matrix, named Abaffian, with rows generating the integer null space of the coefficient matrix. The Smith normal form of a general rectangular integer matrix is a diagonal matrix, obtained by elementary nonsingular (unimodular) operations. Here, we present a class of algorithms for computing the Smith normal form of an integer matrix. In doing this, we propose new ideas to develop a new class of extended integer ABS algorithms generating an integer basis for the integer null space of the matrix. For the Smith normal form, having the need to solve the quadratic Diophantine equation, we present two algorithms for solving such equations. The first algorithm makes use of a special integer basis for the row space of the matrix, and the second one, with the intention of controlling the growth of intermediate results and making use of our given conjecture, is based on a recently proposed integer ABS algorithm. Finally, we report some numerical results on randomly generated test problems showing a better performance of the second algorithm in controlling the size of the solution. We also report the results obtained by our proposed algorithm on the Smith normal form and compare them with the ones obtained using Maple, observing a more balanced distribution of the intermediate components obtained by our algorithm.  相似文献   

11.
In many domains, data now arrive faster than we are able to mine it. To avoid wasting these data, we must switch from the traditional “one-shot” data mining approach to systems that are able to mine continuous, high-volume, open-ended data streams as they arrive. In this article we identify some desiderata for such systems, and outline our framework for realizing them. A key property of our approach is that it minimizes the time required to build a model on a stream while guaranteeing (as long as the data are iid) that the model learned is effectively indistinguishable from the one that would be obtained using infinite data. Using this framework, we have successfully adapted several learning algorithms to massive data streams, including decision tree induction, Bayesian network learning, k-means clustering, and the EM algorithm for mixtures of Gaussians. These algorithms are able to process on the order of billions of examples per day using off-the-shelf hardware. Building on this, we are currently developing software primitives for scaling arbitrary learning algorithms to massive data streams with minimal effort.  相似文献   

12.
A novel image encryption scheme based on spatial chaos map   总被引:1,自引:0,他引:1  
In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint.  相似文献   

13.
We consider the stochastic shortest path problem, a classical finite-state Markovian decision problem with a termination state, and we propose new convergent Q-learning algorithms that combine elements of policy iteration and classical Q-learning/value iteration. These algorithms are related to the ones introduced by the authors for discounted problems in Bertsekas and Yu (Math. Oper. Res. 37(1):66-94, 2012). The main difference from the standard policy iteration approach is in the policy evaluation phase: instead of solving a linear system of equations, our algorithm solves an optimal stopping problem inexactly with a finite number of value iterations. The main advantage over the standard Q-learning approach is lower overhead: most iterations do not require a minimization over all controls, in the spirit of modified policy iteration. We prove the convergence of asynchronous deterministic and stochastic lookup table implementations of our method for undiscounted, total cost stochastic shortest path problems. These implementations overcome some of the traditional convergence difficulties of asynchronous modified policy iteration, and provide policy iteration-like alternative Q-learning schemes with as reliable convergence as classical Q-learning. We also discuss methods that use basis function approximations of Q-factors and we give an associated error bound.  相似文献   

14.
Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that, under mild assumptions, are globally convergent for a wide range of problems in science and engineering. Convergence theory, robust numerical algorithms, and production quality mathematical software exist for general nonlinear systems of equations, and special cases such as Brouwer fixed point problems, polynomial systems, and nonlinear constrained optimization. Using a sample of challenging scientific problems as motivation, some pertinent homotopy theory and algorithms are presented. The problems considered are analog circuit simulation (for nonlinear systems), reconfigurable space trusses (for polynomial systems), and fuel-optimal orbital rendezvous (for nonlinear constrained optimization). The mathematical software packages HOMPACK90 and POLSYS_PLP are also briefly described.  相似文献   

15.
We consider two parallel strategies for randomized restart algorithms. Given a set of available algorithms, one can either choose the best performing algorithm and run multiple copies of it in parallel (single algorithm portfolio), or choose some subset of algorithms to run in parallel (mixed algorithm portfolio). It has been previously shown in the literature that the latter approach may provide better results. In this paper we investigate the extent of such improvement.  相似文献   

16.
In the present paper we describe a new class of algorithms for solving Diophantine systems of equations in integer arithmetic. This algorithm, designated as the integer ABS (iABS) algorithm, is based on the ABS methods in the real space, with extensive modifications to ensure that all calculations remain in the integer space. Importantly, the iABS solves Diophantine systems of equations without determining the Hermite normal form. The algorithm is suitable for solving determined, over- or underdetermined, full rank or rank deficient linear integer equations. We also present a scaled integer ABS system and two special cases for solving general Diophantine systems of equations. In the scaled symmetric iABS (ssiABS), the Abaffian matrix H i is symmetric, allowing that only half of its elements need to be calculated and stored. The scaled non-symmetric iABS system (snsiABS) provides more freedom in selecting the arbitrary parameters and thus the maximal values of H i can be maintained at a certainly lower level. In addition to the above theoretical results, we also provide numerical experiments to test the performance of the ssiABS and the snsiABS algorithms. These experiments have confirmed the suitability of the iABS system for practical applications.  相似文献   

17.
A simulation-based numerical technique for the design of near-optimal manufacturing flow controllers for unreliable flexible manufacturing systems uses quadratic approximations of the value functions that characterize the optimal policy and employs stochastic optimization to design the key coefficients of the quadratic approximations. First and second derivative estimates that drive the optimization algorithm are obtained from a single sample path of the system via infinitesimal perturbation analysis (IPA). Extensive computational experience is reported for one, two, and three-part-type production systems. The relative performance of first-order and second-order stochastic optimization algorithms is investigated. The computational efficiency of these algorithms is finally compared to conventional controller design algorithms based on state-space discretization and successive approximation.This research was supported by the National Science Foundation, Grant No. DDM-89-14277 and DDM-9215368.  相似文献   

18.
In the present article, the behaviour of a nonlinear dynamical system has been analysed using the approach of bifurcation theory. The system is important due to the fact that it can simulate the magnetic field configurations in various situations. The nature of bifurcation has been explored in the parameter space with the help of continuation algorithm. The various limit and bifurcation points (BPs) are classified. In the second part, we have studied the temporal evolution of the system which also shows a chaotic behaviour. The system under consideration shows instability both with respect to parameter variation and evolution of time. Lastly, some mechanisms have been studied to control such chaotic scenario.  相似文献   

19.
主要研究了Hilbert空间中的一类不可微最优化问题的基路径增量目标水平算法.证明了当约束集合为有界集时,问题的最优解集非空,且这时通过算法生成的迭代点列是弱收敛于最优解的..  相似文献   

20.
The response time variability problem (RTVP) is a combinatorial scheduling problem that has recently appeared in the literature. This problem has a wide range of real life applications in fields such as manufacturing, hard real-time systems, operating systems and network environments. Originally, the RTVP occurs whenever products, clients or jobs need to be sequenced in such a way that the variability in the time between the instants at which they receive the necessary resources is minimized. Since the RTVP is hard to solve, heuristic techniques are needed for solving it. Three metaheuristic—multi-start, GRASP and PSO—algorithms proposed for solving the RTVP in two previous studies have been the most efficient to date in solving non-small instances of the RTVP. We propose solving the RTVP by means of a psychoclonal algorithm based approach. The psychoclonal algorithm inherits its attributes from Maslow’s hierarchy of needs theory and the artificial immune system (AIS) approach, specifically the clonal selection principle. In this paper, we compare the proposed psychoclonal algorithm with the three aforementioned metaheuristic algorithms and show that, on average, the psychoclonal algorithm strongly improves on the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号