首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
CCl2(A1B1)被O2及取代甲烷类分子猝灭的动力学研究   总被引:2,自引:0,他引:2  
对CCl4/Ar混合气体放电产生CCl2自由基,再用541.52nm激光将电子基态CCl2激发到激发态A^1B1(0,4,0)振动态k=0能级上,通过检测 激发态CCl2时间分辨荧光信号,测得室温下CCl2(A^1B1)被O2,CF4,CF2Cl,CH3NO2,CH2Br2等分子猝灭的实验结果,用改进的三能级模型分析处理实验数据,获得态分辨速常数KA和Ka值,并对实验结果进行了讨论。  相似文献   

2.
不同振动态的CCl2(A1B1)被醇和酮猝灭的动力学   总被引:2,自引:0,他引:2  
对CCl4/Ar进行混合气体直流脉冲放电产生CCl2自由基,再分别用550.56,541.52,532.25,524.31,523.82和523.27nm激光将电子基肽CCl2激励到激发态A^1B1的(0,3,0),(0,4,0),(1,3,0),(0,6,0),(1,4,0)和(2,2,0)振动态,通过检测激发态A^1B1 CCl2的不同振动态的时间分辨荧光信号(呈双指数衰 ),测得室温下A^1B1 CCl2的不同振动态被醇类和酮类分子猝灭的实验结果,用三能级模型分析处理实验数据,获得态分辨速率常数kA和ka值,结果表明,其速率常数与振动态的关系并不明显。  相似文献   

3.
CCl2(A1B1和a3B1)被酮类分子猝灭速率常数的测定   总被引:2,自引:0,他引:2  
对CCl4/Ar混合气体脉冲直流高压放电产生CCl2自由基,经过约110μs后,再用541.52mm激光将电子基态CC2激励到激发态A1B1(0,4,0)振动态K=0能级上,通过检测激发态CCl2(A)时间分辨荧光信号,测得室温下CC2(A1B1和a3B1)被酮类分子猝灭的实验结果,用所提出的三能级模型分析处理实验数据,获得态分辨速率常数KA和Ka值.  相似文献   

4.
用放电 LIF实验装置,对CCl4/Ar混合气体放电产生CCl2自由基,再用541.52 nm激光将电子基态CCl2激励到激发态A 1B1(0,4,0)振动能级上,通过检测激发态CCl2时间分辨荧光信号,测得室温下CCl2(A 1B1)被烷烃类分子猝灭的实验结果,用我们提出的三能级模型分析处理实验数据,获得CCl2(A 1B1)态和CCl2(a 3B1)态的碰撞猝灭速率常数kA和ka值.  相似文献   

5.
用放电-LIF实验装置,对CCl4/Ar混合气体放电产生*CCl2,再用541.52nm激光将电子基态*CCl2激发到激发态A1B1(0,4,0)模pR1能级上,检测激发态*CCl2时间分辨荧光信号,测得室温下*CCl2(A1B1)被甲烷及氯代甲烷分子猝灭的实验结果,用三能级模型分析处理实验数据获得态分辨速率常数kq1,kq2和kq3值和*CCl2(A1B1→X1A1)及(a3B1→X1A1)自发辐射寿命分别为(0.83±0.03)μs和(3.12±0.25)μs.  相似文献   

6.
对CCl4/Ar混合气体脉冲直流高压放电产生CCl2自由基,用541.52 nm激光将电子基态CCl2激励到A 1B1(0,4,0)振动能级上. 通过检测激发态CCl2时间分辨荧光信号,测得室温下CCl2(A 1B1和a 3B1)被O2、N2、NO、 CO2、 CS2、H2O、SO2,和SF6分子猝灭的实验结果.用我们提出的三能级模型分析处理实验数据,获得了CCl2(A 1B1)态和CCl2(a 3B1)态的碰撞猝灭速率常数kA和ka值.  相似文献   

7.
CCl4/Ar混合气体进行脉冲高压直流放电产生CCl2自由基,再用YAG泵浦的染料激光输出的541.52 nm激光将电子基态CCl2激励到电子激发态A1B1(0,4,0)模的pR1能级上,通过检测激发态CCl2自由基的时间分辨荧光信号,测得了室温下(293 K)激发态CCl2自由基被醇类分子猝灭的动力学结果,根据我们提出的三能级模型来分析处理这些实验数据,首次获得了激发态CCl2自由基被醇类分子猝灭的态分辨的速率常数kq1,kq2和kq3的值.并对这些数据与猝灭剂的结构关系进行了分析讨论.  相似文献   

8.
用放电- LIF实验装置 ,对 CCl4/Ar混合气体放电产生 CCl_2自由基 ,再用 541.52 nm激光将电子基态 CCl_2激励到激发态 A~B_1(0,4,0)振动能级上 ,通过检测激发态 CCl_2时间分辨荧光信号 ,测得室温下 CCl_2(A~B_1)被烷烃类分子猝灭的实验结果 ,用我们提出的三能级模型分析处理实验数据 ,获得 CCl_2(A~1B_1)态和 CCl_2(a~3B_1)态的碰撞猝灭速率常数 k_A和 k_a值 .  相似文献   

9.
用266nm激光光解CHBr_3分子产生CH(A,B)态自由基,通过测量CH(A,B→X)自发辐射的时间分辨信号测定室温下(CH_3)_2NH、(C_2H_5)_2NH、(C_2H_5)_3N、n-C_5H_(12)、n-C_6H_(14)和n-C_7H_(16)对CH(A,B,v'=0)的猝灭速率常数.发现猝灭速率常数与猝灭剂烷烃分子中的C-H键数近似成线性关系,但对大的烷烃分子,这种增加逐渐趋缓.用碰撞络合物模型计算胺类分子及烷烃分子与CH形成碰撞络合物时的生成截面,结果表明,在电子激发态CH自由基的猝灭过程中,碰撞对子间的多极相互吸引势和色散力作用势可能起重要作用.  相似文献   

10.
CCl~4/Ar混合气体进行脉冲高压直流放电产生CCl~2自由基,再用YAG泵浦的染料激光输出的541.52nm激光将电子基态CCl~2激励到电子激发态A^1B~1(0,4,0)模的P^R~1能级上,通过检测激发态CCl~2自由基的时间分辨荧光信号,测得了室温下(293K)激发态CCl~2自由基被醇类分子猝灭的动力学结果,根据我们提出的三能级模型来分析处理这些实验数据,首次获得了激发态CCl~2自由基被醇类分子猝灭的态分辨的速率常数k~q~1,k~q~2和k~q~3的值,并对这些数据与猝灭剂的结构关系进行了分析讨论。  相似文献   

11.
对CCl4/Ar混合气体脉冲直流高压放电产生 CCl2自由基,用 541.52 nm激光将电子基态 CCl2激励到A1B1(0,4,0)振动能级上.通过检测激发态 CCl2时间分辨荧光信号,测得室温下 CCl2(A1B1和 a3B1)被 O2、N2、NO、CO2、CS2、H2O、SO2,和SF6分子猝灭的实验结果.用我们提出的三能级模型分析处理实验数据,获得了CCl2(A1B1)态和 CCl2(a3B1)态的碰撞猝灭速率常数 kA和 ka值.  相似文献   

12.
The recombination rate constants for the reactions NH2(X2B1) + NH2(X2B1) + M → N2H4 + M and NH2(X2B1) + H + M → NH3 + M, where M was CH4, C2H6, CO2, CF4, or SF6, were measured in the same experiment over presseure ranges of 1-20 and 7-20 Torr, respectively, at 296 ± 2 K. The NH2 radical was produced by the 193 nm laser photolysis of NH3. Both NH2 and NH3 were monitored simultaneously following the photolysis laser pulse. High-resolution time-resolved absorption spectroscopy was used to monitor the temporal dependence of both species: NH2 on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A2A1 ← (0,0,0)X2B1 electronic transition near 675 nm and NH3 in the IR on either of the inversion doublets of the qQ3(3) rotational transition of the ν1 fundamental near 2999 nm. The NH2 self-recombination clearly exhibited falloff behavior for the third-body collision partners used in this work. The pressure dependences of the NH2 self-recombination rate constants were fit using Troe’s parametrization scheme, k(inf), k(0), and F(cent), with k(inf) = 7.9 × 10(-11) cm3 molecule(-1) s(-1), the theoretical value calculated by Klippenstein et al. (J. Phys. Chem. A113, 113, 10241). The individual Troe parameters were CH4, k(0)(CH4) = 9.4 × 10(-29) and F(cent)(CH4) = 0.61; C2H6, k(0)(C2H6) = 1.5 × 10(-28) and F(cent)(C2H6) = 0.80; CO2, k(0)(CO2) = 8.6 × 10(-29) and F(cent)(CO2) = 0.66; CF4, k(0)(CF4) = 1.1 × 10(-28) and F(cent)(CF4) = 0.55; and SF6, k(0)(SF6) = 1.9 × 10(-28) and F(cent)(SF6) = 0.52, where the units of k0 are cm6 molecule(-2) s(-1). The NH2 + H + M reaction rate constant was assumed to be in the three-body pressure regime, and the association rate constants were CH4, (6.0 ± 1.8) × 10(-30); C2H6, (1.1 ± 0.41) × 10(-29); CO2, (6.5 ± 1.8) × 10(-30); CF4, (8.3 ± 1.7) × 10(-30); and SF6, (1.4 ± 0.30) × 10(-29), with units cm6 molecule(-1) s,(-1) and the systematic and experimental errors are given at the 2σ confidence level.  相似文献   

13.
The recombination rate constant for the NH(2)(X(2)B(1)) + NH(2)(X(2)B(1)) → N(2)H(4)(X(1)A(1)) reaction in He, Ne, Ar, and N(2) was measured over the pressure range 1-20 Torr at a temperature of 296 K. The NH(2) radical was produced by 193 nm laser photolysis of NH(3) dilute in the third-body gas. The production of NH(2) and the loss of NH(3) were monitored by high-resolution continuous-wave absorption spectroscopy: NH(2) on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A(2)A(1) ← (0,0,0) X(2)B(1) vibronic band and NH(3) on either inversion doublet of the (q)Q(3)(3) rotational transition of the ν(1) fundamental. Both species were detected simultaneously following the photolysis laser pulse. The broader Doppler width of the NH(2) spectral transition allowed temporal concentration measurements to be extended up to 20 Torr before pressure broadening effects became significant. Fall-off behavior was identified and the bimolecular rate constants for each collision partner were fit to a simple Troe form defined by the parameters, k(0), k(inf), and F(cent). This work is the first part of a two part series in which part 2 will discuss the measurements with more efficient energy transfer collision partners CH(4), C(2)H(6), CO(2), CF(4), and SF(6). The pressure range was too limited to extract any new information on k(inf), and k(inf) was taken from the theoretical calculations of Klippenstein et al. (J. Phys. Chem A 2009, 113, 10241) as k(inf) = 7.9 × 10(-11) cm(3) molecule(-1) s(-1) at 296 K. The individual Troe parameters were: He, k(0) = 2.8 × 10(-29) and F(cent) = 0.47; Ne, k(0) = 2.7 × 10(-29) and F(cent) = 0.34; Ar, k(0) = 4.4 × 10(-29) and F(cent) = 0.41; N(2), k(0) = 5.7 × 10(-29) and F(cent) = 0.61, with units cm(6) molecule(-2) s(-1) for k(0). In the case of N(2) as the third body, it was possible to measure the recombination rate constant for the NH(2) + H reaction near 20 Torr total pressure. The pure three-body recombination rate constant was (2.3 ± 0.55) × 10(-30) cm(6) molecule(-2) s(-1), where the uncertainty is the total experimental uncertainty including systematic errors at the 2σ level of confidence.  相似文献   

14.
Hydrogen abstraction from diarylamines (4-X-C(6)H(4))(2)NH [X = H, CH(3), C(8)H(17), CH(3)O, and Br] by the 2-methyl-2-phenylpropyl radical in n-dodecane solution was investigated by thermolysis of 3-methyl-3-phenylbutanoyl peroxide in the presence of various concentrations of the amines. The reaction is a non-chain process in which the 2-methyl-2-phenylpropyl radical and its rearrangement product, the 2-benzylpropan-2-yl radical, abstract hydrogen from both the solvent and the amine. Cross-disproportionation reactions of the rearranged radical led to the formation of significant amounts of beta,beta-dimethylstyrene. Rate constants for hydrogen abstraction by the unrearranged, primary alkyl radical from n-dodecane (k(373K) = 3.5 x 10(3) M(-)(1) s(-)(1)), diphenylamine (k(373K) = 1.3 x 10(6) M(-)(1) s(-)(1)), and the substituted diarylamines were determined from the product yields and the known rate constant for the radical rearrangement. From kinetic experiments with N-deuteriodiphenylamine the deuterium kinetic isotope effect,k(NH)/k(ND), was found to be 2.3 at 373 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号