首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper is to study the convergence of finite element approximation to the exact solution of general self-adjoint elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it is difficult to achieve optimal order of convergence with classical finite element methods [Numer. Math. 1998; 79:175–202]. In this paper, an isoparametric type of discretization is used to prove optimal order error estimates in L 2 and H 1 norms when the global regularity of the solution is low. The interface is assumed to be of arbitrary shape and is smooth for our purpose. Further, for the purpose of numerical computations, we discuss the effect of numerical quadrature on finite element solution, and the related optimal order estimates are also established.  相似文献   

2.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

3.
The purpose of this paper is to study the finite element method for second order semilinear elliptic interface problems in two dimensional convex polygonal domains. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with straight interface triangles [Numer. Math., 79 (1998), pp. 175–202]. For a finite element discretization based on a mesh which involve the approximation of the interface, optimal order error estimates in L 2 and H 1-norms are proved for linear elliptic interface problem under practical regularity assumptions of the true solution. Then an extension to the semilinear problem is also considered and optimal error estimate in H 1 norm is achieved.  相似文献   

4.
The convergence of finite element methods for linear elliptic boundary value problems of second and forth order is well understood. In this article, we introduce finite element approximations of some linear semi-elliptic boundary value problem of mixed order on a two-dimensional rectangular domain Q. The equation is of second order in one direction and forth order in the other and appears in the optimal control of parabolic partial differential equations if one eliminates the control and the state (or the adjoint state) in the first order optimality conditions. We establish a regularity result and estimate for the finite element error of conforming approximations of this equation. The finite elements in use have a tensor product structure, in one dimension we use linear, quadratic or cubic Lagrange elements in the other dimension cubic Hermite elements. For these elements, we prove the error bound O(h 2 + τ k ) in the energy norm and O((h 2 + τ k )(h 2 + τ)) in the L 2(Q)-norm.  相似文献   

5.
The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L 2 and the H 1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficiently fine mesh. The analysis is valid for both simplicial and rectangular finite elements of arbitrary order. Numerical experiments corroborate the theoretical convergence rates.  相似文献   

6.
We analyze a finite element approximation of an elliptic optimal control problem with pointwise bounds on the gradient of the state variable. We derive convergence rates if the control space is discretized implicitly by the state equation. In contrast to prior work we obtain these results directly from classical results for the W 1,∞-error of the finite element projection, without using adjoint information. If the control space is discretized directly, we first prove a regularity result for the optimal control to control the approximation error, based on which we then obtain analogous convergence rates.  相似文献   

7.
We propose and analyze a fully discrete H 1-Galerkin method with quadrature for nonlinear parabolic advection–diffusion–reaction equations that requires only linear algebraic solvers. Our scheme applied to the special case heat equation is a fully discrete quadrature version of the least-squares method. We prove second order convergence in time and optimal H 1 convergence in space for the computer implementable method. The results of numerical computations demonstrate optimal order convergence of scheme in H k for k = 0, 1, 2. Support of the Australian Research Council is gratefully acknowledged.  相似文献   

8.
We employ a piecewise-constant, discontinuous Galerkin method for the time discretization of a sub-diffusion equation. Denoting the maximum time step by k, we prove an a priori error bound of order k under realistic assumptions on the regularity of the solution. We also show that a spatial discretization using continuous, piecewise-linear finite elements leads to an additional error term of order h 2 max (1,logk  − 1). Some simple numerical examples illustrate this convergence behaviour in practice. We thank the University of New South Wales for financial support provided by a Faculty Research Grant.  相似文献   

9.
We consider a class of mixed finite element methods for nonlinear parabolic problems over a plane domain. The finite element spaces taken are Raviart-Thomas spaces of index k, k ? 0. We obtain optimal order L2- and almost optimal order L-error estimates for the finite element solution and order optimal L2-error estimates for its gradient. We also derive the error estimates for the time derivatives of the solution. Our results extend those previously obtained by Johnson and Thomée for the corresponding linear problems with k ? 1.  相似文献   

10.
The present work is an extension of our previous work (Bradji, Numer Methods Partial Differ Equations, to appear) which dealt with error analysis of a finite volume scheme of a first convergence order (both in time and space) for second‐order hyperbolic equations on general nonconforming multidimensional spatial meshes introduced recently in (Eymard et al. IMAJ Numer Anal 30(2010), 1009–1043). We aim in this article to get some higher‐order time accurate schemes for a finite volume method for second‐order hyperbolic equations using the same class of spatial generic meshes stated above. We derive a family of finite volume schemes approximating the wave equation, as a model for second‐order hyperbolic equations, in which the discretization in time is performed using a one‐parameter scheme of the Newmark's method. We prove that the error estimate of these finite volume schemes is of order two (or four) in time and it is of optimal order in space. These error estimates are analyzed in several norms which allow us to derive approximations for the exact solution and its first derivatives whose the convergence order is two (or four) in time and it is optimal in space. We prove in particular, when the discrete flux is calculated using a stabilized discrete gradient, that the convergence order is \begin{align*}k^2+h_\mathcal{D}\end{align*} or \begin{align*}k^4+h_\mathcal{D}\end{align*}, where \begin{align*}h_\mathcal{D}\end{align*} (resp. k) is the mesh size of the spatial (resp. time) discretization. These estimates are valid under the regularity assumption \begin{align*}u\in C^4(\lbrack 0,T\rbrack;C^2(\overline{\Omega}))\end{align*}, when the schemes are second‐order accurate in time, and \begin{align*}u\in C^6(\lbrack 0,T\rbrack;C^2(\overline{\Omega}))\end{align*}, when the schemes are four‐order accurate in time for the exact solution u. The proof of these error estimates is based essentially on a comparison between the finite volume approximate solution and an auxiliary finite volume approximation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
A new weak Galerkin (WG) finite element method is introduced and analyzed in this article for the biharmonic equation in its primary form. This method is highly robust and flexible in the element construction by using discontinuous piecewise polynomials on general finite element partitions consisting of polygons or polyhedra of arbitrary shape. The resulting WG finite element formulation is symmetric, positive definite, and parameter‐free. Optimal order error estimates in a discrete H2 norm is established for the corresponding WG finite element solutions. Error estimates in the usual L2 norm are also derived, yielding a suboptimal order of convergence for the lowest order element and an optimal order of convergence for all high order of elements. Numerical results are presented to confirm the theory of convergence under suitable regularity assumptions. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1003–1029, 2014  相似文献   

12.
Summary. In this work, new interpolation error estimates have been derived for some well-known interpolators in the quasi-norms. The estimates are found to be essential to obtain the optimal a priori error bounds under the weakened regularity conditions for the piecewise linear finite element approximation of a class of degenerate equations. In particular, by using these estimates, we can close the existing gap between the regularity required for deriving the optimal error bounds and the regularity achievable for the smooth data for the 2-d and 3-d p-Laplacian.Mathematics Subject Classification (1991): 65N30  相似文献   

13.
In this article, we consider the finite volume element method for the monotone nonlinear second‐order elliptic boundary value problems. With the assumptions which guarantee that the corresponding operator is strongly monotone and Lipschitz‐continuous, and with the minimal regularity assumption on the exact solution, that is, uH1(Ω), we show that the finite volume element method has a unique solution, and the finite volume element approximation is uniformly convergent with respect to the H1 ‐norm. If uH1+ε(Ω),0 < ε ≤ 1, we develop the optimal convergence rate \begin{align*}\mathcal{O}(h^{\epsilon})\end{align*} in the H1 ‐norm. Moreover, we propose a natural and computationally easy residual‐based H1 ‐norm a posteriori error estimator and establish the global upper bound and local lower bounds on the error. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
We study a finite element method applied to a system of coupled wave equations in a bounded smooth domain in \mathbbRd {\mathbb{R}^d} , d = 1, 2, 3, associated with a locally distributed damping function. We start with a spatially continuous finite element formulation allowing jump discontinuities in time. This approach yields, L 2(L 2) and L (L 2), a posteriori error estimates in terms of weighted residuals of the system. The proof of the a posteriori error estimates is based on the strong stability estimates for the corresponding adjoint equations. Optimal convergence rates are derived upon the maximal available regularity of the exact solution and justified through numerical examples. Bibliography: 14 titles. Illustrations: 4 figures.  相似文献   

15.
In this paper we construct an upwind finite volume element scheme based on the Crouzeix-Raviart nonconforming element for non-selfadjoint elliptic problems. These problems often appear in dealing with flow in porous media. We establish the optimal order H 1-norm error estimate. We also give the uniform convergence under minimal elliptic regularity assumption   相似文献   

16.
A finite element method is proposed and analyzed for hyperbolic problems with discontinuous coefficients. The main emphasize is given on the convergence of such method. Due to low global regularity of the solutions, the error analysis of the standard finite element method is difficult to adopt for such problems. For a practical finite element discretization, optimal error estimates in L(L2) and L(H1) norms are established for continuous time discretization. Further, a fully discrete scheme based on a symmetric difference approximation is considered, and optimal order convergence in L(H1) norm is established. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the domain is polygonal, special attention has to be paid to the limited regularity of the exact solution. We give sufficient conditions in terms of data that yield optimal order error estimates in L2 and H 1 . The convergence rate in the L norm is suboptimal, the same as in the corresponding finite element method, and almost optimal away from the corners. We also briefly consider the lumped mass modification and the backward Euler fully discrete method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

18.
We study a general subgradient projection method for minimizing a quasiconvex objective subject to a convex set constraint in a Hilbert space. Our setting is very general: the objective is only upper semicontinuous on its domain, which need not be open, and various subdifferentials may be used. We extend previous results by proving convergence in objective values and to the generalized solution set for classical stepsizes t k →0, ∑t k =∞, and weak or strong convergence of the iterates to a solution for {t k }∈ℓ2∖ℓ1 under mild regularity conditions. For bounded constraint sets and suitable stepsizes, the method finds ε-solutions with an efficiency estimate of O-2), thus being optimal in the sense of Nemirovskii. Received: October 4, 1998 / Accepted: July 24, 2000?Published online January 17, 2001  相似文献   

19.
We consider the computation of the Cauchy principal value integral by quadrature formulae Q n F [f] of compound type, which are obtained by replacing f by a piecewise defined function Fn[f]. The behaviour of the constants ki, n in the estimates [R n F [f]] |⩽K i,n f (i) (where R n F [f] is the quadrature error) is determined for fixed i and n→∞, which means that not only the order, but also the coefficient of the main term of ki, n is determined. The behaviour of these error constants ki, n is compared with the corresponding ones obtained for the method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour.  相似文献   

20.
A refined a posteriori error analysis for symmetric eigenvalue problems and the convergence of the first-order adaptive finite element method (AFEM) is presented. The H 1 stability of the L 2 projection provides reliability and efficiency of the edge-contribution of standard residual-based error estimators for P 1 finite element methods. In fact, the volume contributions and even oscillations can be omitted for Courant finite element methods. This allows for a refined averaging scheme and so improves (Mao et al. in Adv Comput Math 25(1–3):135–160, 2006). The proposed AFEM monitors the edge-contributions in a bulk criterion and so enables a contraction property up to higher-order terms and global convergence. Numerical experiments exploit the remaining L 2 error contributions and confirm our theoretical findings. The averaging schemes show a high accuracy and the AFEM leads to optimal empirical convergence rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号