首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
概述了过渡金属氢化物尤其是钌氢配合物的氧化加成、M-X还原、质子化、过渡金属氢化物转化和原子簇过渡金属配合物氢聚等合成方法的进展情况.  相似文献   

2.
本实验以激光离解的方式, 较系统地测量了钴、铌及其他一些过渡金属原子簇阳离子的结合能. 实验结果表明: 金属原子簇离子的结合能与其成族原子数关系不大, 而明显地受其组分的影响. 本文还探讨了金属原子簇离子的光离解机理及其几何结构模型。  相似文献   

3.
唐敖庆  李前树  孙家钟 《化学学报》1986,44(12):1217-1223
本文将过渡金属原子簇化合物的9N-L结构规则, 用于讨论Mo-Fe-S原子簇化合物, 得到了它们的结构和自旋性质之间的关系,推得的理论最大自旋值与实验事实吻合. 进而, 对各种Mo-Fe-S原子簇化合物的典型分子或模型分子, 进行了EHMO量子化学计算, 得到了与上述讨论相一致的结果, 进 一步揭示和验证了上述讨论的本质.  相似文献   

4.
继早期有机化学(本质上可以看成是碳原子簇化学)和硼原子簇化学两门非过渡元素原子簇化学发展之后,过渡金属原子簇化学逐渐发展成为无机化学和金属有机化学中最活跃的新化学领域之一.由于催化化学、分子生物学和材料科学等方面的推动,过渡金属原子簇化学在近十多年来取得了很大的发展,并且很快地出现了一些定量或半定量地阐明原子簇结构的量子化学理论.但是,应该看到,过渡金属原子簇化合物的合成化学和反应化学仍然是处在一个形成的时期.一百三十多年前,法国化学家Roussin合成了第一个被称为陆森黑盐(Black Roussin Salt)的铁硫簇合物阴离子[Fe_4S_3(NO)_7]~-。这个化合物的合成,形象地说  相似文献   

5.
《过渡金属原子簇化学的新进展》评介张乾二(厦门大学化学系361005)近20年来,卢嘉锡教授致力于过渡金属原子簇化学研究,新近问世的中文版《过渡金属原子簇化学的新近展》(福建科学技术出版社1997年3月出版)是他在这一领域苦心经营的结晶,该书可以帮助...  相似文献   

6.
杨上峰  刘富品  陈传宝  章文峰 《化学进展》2010,22(10):1869-1881
内嵌混合金属氮化物原子簇富勒烯的发现极大地扩展了内嵌富勒烯家族。内嵌混合金属氮化物原子簇富勒烯是一类新型的内嵌富勒烯,其内嵌物为由2-3种不同的金属组成的氮化物原子簇。本文首先介绍了新型内嵌混合金属氮化物原子簇富勒烯的发现、合成和分离方法,并对目前所分离出来的内嵌混合金属氮化物原子簇富勒烯进行了分类。然后总结了目前所报导的内嵌混合金属氮化物原子簇富勒烯的结构表征手段,对于不同的内嵌混合金属氮化物原子簇富勒烯的分子结构分别进行了阐述。最后着重讨论了内嵌混合金属氮化物原子簇富勒烯的特殊电子性质以及物理和化学性质。本文还对内嵌混合金属氮化物原子簇富勒烯潜在的应用前景作了展望,在内嵌具有不同物理性质的两到三种金属原子的基础上,所形成的内嵌混合金属氮化物原子簇富勒烯有可能兼具不同金属原子各自的性质,从而成为多功能综合的功能材料。  相似文献   

7.
近年来,关于过渡金属原子簇化合物的研究工作发展很快。这类化合物的通式是 M_pL_q,其中 M_p 是 p 个以 M—M 键相结合的金属原子所形成的原子簇,L 则是与原子簇 M_p 相结合的配位体,如羰基、卤素离子、CN~-、膦等。这类化合物有许多特点,金属原子簇具有介于单原子和金属微晶之间的一种过渡型结构。配位体和被金属表面吸附了的分子或离子相似。由  相似文献   

8.
本文报道了三类新型的无机金属聚合物—原子簇聚合物、金属配聚物和金属有机/金属配聚物的结构和性能。  相似文献   

9.
类金属P对原子簇NinB2(n=1~6) 性质影响的理论研究   总被引:2,自引:0,他引:2  
石建  方志刚  刘冬杰  胡红智 《结构化学》2004,23(12):1399-1403
依据实验事实设计组成可调的系列原子簇 NinBP、NinB2 (n = 1~6)模型, 利用密度泛函(DFT)方法在 B3LYP/Lanl2dz 水平上对所设计构型进行优化,得到各原子簇的最稳定构型,进而研究类金属元素 P 对非晶态合金 Ni-B 性质的影响。结果表明:三元非晶态合金 Ni–B–P 的稳定性强于二元非晶态合金 Ni-B;类金属 P 起到调节金属 Ni 原子 3d 轨道布居数的作用。这些均与实验结果一致,说明模型能反映合金的性质。  相似文献   

10.
徐龙军  李国华  张欣雨  张廷廷 《化学通报》2021,84(11):1150-1154,1162
二维过渡金属硫化物(2D TMDCs)既具有成像能力可用于肿瘤的诊断,又具有光热转换能力可用于肿瘤PTT,因此在肿瘤诊疗一体化中得到广泛应用。为更好了解2D TMDCs在肿瘤诊疗一体化中的应用,综述了与2D TMDCs有关的肿瘤成像方式的利弊,2D TMDCs作为肿瘤诊疗一体化剂的优势,以及其在肿瘤诊疗一体化中的应用,并对2D TMDCs在肿瘤诊疗一体化中的发展前景和面临的挑战进行了讨论。 关键词 二维过渡金属硫化物;成像;PTT;诊疗一体化  相似文献   

11.
Ion mobility measurements and molecular modeling calculations have been used to examine the conformations of large multiply charged polyalanine peptides. Two series of [Ala(n)+3H](3+) conformations which do not interconvert during the 10 to 30 ms experimental timescales are observed: a family of elongated structures for n = 18 to 39 and a series of more compact conformations for n = 24 to 41. The more compact state becomes the dominant conformer type for n > 32. Molecular modeling studies and comparisons of calculated collision cross sections with experiment indicate that the elongated ions have extended helical conformations. We suggest that the more compact state corresponds to a new conformer type: a folded hinged helix-coil state in which helical and coil regions have similar physical dimensions. The competition between extended and compact states is rationalized by considering differences in charge stabilization and entropy.  相似文献   

12.
A formula is suggested for the orbital electronegativity (OE) [1] in the calculation of the effective charges on atoms. This formula differs from that found in the literature [2] in that it takes electrostatic interaction into account. It is used with the self-consistent field method to calculate the effective charges on the atoms in a molecule XBeY, which are obtained for all the atoms of a molecule of the type ClBeX (X is F, Cl, Br, or I). It is shown that the effective negative charge on the Cl increases as the effective charge on X decreases (i.e., as the B-X bond becomes more covalent). Increased ionicity in this bond is generally due to the increased covalency in the opposite bond.  相似文献   

13.
Ab initio electronic structure calculations on a series of ligands, p-RC6H4NC:, indicate, that the energy of the LUMO correlates with the electron-withdrawing/donating capabilities of the substituent group, which determines the relative pi-acidity of the ligand. Depending on the nature of the para substituent group on the aryl isocyanide ligand, bis(aryl isocyanide) complexes of tungsten-containing bulky bidentate arylphosphine ligands adopt either cis or trans conformations. The frontier molecular orbital formalism predicts that strong pi-acids, which contain electron-withdrawing groups, tend to polarize sufficient charge density away from the metal center to effect the formation of the sterically less favorable but electronically stabilized cis conformer. Density functional theory calculations on similar complexes containing phosphines which do not impose severe steric contraints indicate that the balance between steric and electronic stabilization can be effectively predicted by comparing the relative energies of the ligand LUMOs.  相似文献   

14.
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12–23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.  相似文献   

15.
Photoinduced recoordination of Ca2+ complexes of the photochromic azacrown ethers is studied by the density functional method. The study included model arylazacrown ethers containing various acceptor groups in the aromatic ring in the para position to the azacrown ether moiety and a real azacrown-containing styryl dye. It is found that both free azacrown ethers and their complexes can adopt two types of conformations: (1) axial conformations, in which the aromatic ring axis passing through the crown ether nitrogen Ncr and the opposite atom of the aromatic ring is perpendicular to the root-mean-square (RMS) plane of the crown ether (least-squares fitted plane for all the crown ether atoms), and (2) equatorial conformations, in which the aromatic ring axis only slightly deflects from the RMS plane of the crown ether. In the equatorial conformers, the metal cation is coordinated only to the O atoms of the azacrown ether cycle, the metal—nitrogen bond is broken, and Ncr is conjugated with the aromatic ring. In the axial conformers, the metal cation is additionally coordinated to Ncr. It is found that the presence of an acceptor group bearing a formal positive charge decreases the relative energy of the equatorial conformer and favors metal—nitrogen bond dissociation, which results in the recoordination of the metal cation. However, a long distance between the charged group and Ncr has the reverse effect. The photoinduced recoordination observed in the alkaline-earth metal complexes of the photochromic azacrown ethers is explained by the transitions between the axial and equatorial conformers facilitated by the charge transfer in the excited state of the complex.  相似文献   

16.
To understand the conformation of 1,2-dimethoxyethane (DME) in water, a system of two kinds of molecules, DME and H_2O, was focused. The interaction of various conformers of DME with water was studied by means of ab initio molecular orbital calculation with 6-31G (d) basis set. It is shown that there are two forms of interactions between the two molecules in the system, the close touched (H_2O attaches to the two oxygen atoms of DME) and the open touched (H_2O attaches to one oxygen atom of DME) structures. The conformation of DME is remarkably influenced by the interactions. Instead the ttt conformer is preferred in the gas state, with a close touched H_2O the tgt conformer becomes the most stable one. The obtained hydration energies show that the stabilized order of DME conformers by water is tgt>tgg′>ttt.  相似文献   

17.
The use of real space functions and molecular graphs has pushed some chemists to wonder: Are interactions between negatively charged oxygen atoms possible? In this contribution we analyze whether there is a real interaction between oxygen atoms in nitryl halide dimers (XNO2)2 (X=F, Cl, Br and I) and in tetranitromethane and derivatives. Based on ab-initio and density functional theories (DFT) methods, we show these complexes are weakly stabilized. Energy decomposition analyses based on local molecular orbitals (LMOEDA) and interacting quantum atoms (IQA) reveal both dispersion and exchange play a crucial role in the stabilization of these complexes. Electron charge density and IQA analyses indicate that the oxygen atoms are connected by privileged exchange channels. In addition, electrostatic interactions between O and N atoms are also vital for the stabilization of the complexes. Finally, a reasonable explanation is given for the dynamic behavior of nitryl groups in tetranitromethane and derivatives.  相似文献   

18.
Interactions of α‐D ‐glucose with gold, silver, and copper metal clusters are studied theoretically at the density functional theory (CAM‐B3LYP) and MP2 levels of theory, using trimer clusters as simple catalytic models for metal particles as well as investigating the effect of cluster charge by studying the interactions of cationic and anionic gold clusters with glucose. The bonding between α‐D ‐glucose and metal clusters occurs by two major bonding factors; the anchoring of M atoms (M = Cu, Ag, and Au) to the O atoms, and the unconventional M…H? O hydrogen bond. Depending on the charge of metal clusters, each of these bonds contributes significantly to the complexation. Binding energy calculations indicate that the silver cluster has the lowest and gold cluster has the highest affinity to interact with glucose. Natural bond orbital analysis is performed to calculate natural population analysis and charge transfers in the complexes. Quantum theory of atoms in molecules was also applied to interpret the nature of bonds. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Thirty-four nano-basket derivatives of di-ionizable calix[4]arene conformers in nine scaffolds bearing two pendant groups of N-(R)-sulfonyl carboxamides were synthesized and examined using isothermal titration calorimetry. The binding mechanisms of synthesized conformers toward alkali metal cations were evaluated and two main interactions were assessed including cation?C?? interaction between alkali metal and the aromatic unit of conformer as well as the strong binding ion?Cdipole interaction between nitrogen atoms in the pendant groups and alkali cation. The ITC data revealed that the bindings of cone and partial-cone conformers toward alkali metal cations exhibited one-step mechanism, while both 1,2 alternate conformer bounds the alkali metal cations in a two-step mechanism.  相似文献   

20.
The equilibrium molecular structure of Si(8)O(12)(OSiMe(3))(8) has been determined in the gas phase by electron diffraction (GED). With OSi-containing substituents on the cage silicon atoms, this molecule contains a moiety, which would, if reproduced in a periodic manner, yield a zeolite-type structure. Extensive ab initio calculations were used to identify two conformers of this molecule, with D(4) and D(2) point-group symmetries; the D(4)-symmetric conformer was approximately 1.2 kJ mol(-1) lower in energy. With 132 atoms in each conformer, this is one of the largest studies to be undertaken using gas electron diffraction. Semiempirical molecular-dynamics (SE-MD) calculations were used to give amplitudes of vibration, vibrational distance corrections (differences between interatomic distances in the equilibrium structure and the vibrationally averaged distances that are given directly by the diffraction data), and anharmonic constants. The structure of Si(8)O(12)(CHCH(2))(8) has also been determined by GED. Calculations showed that the vinyl groups are fairly unhindered and rotate between three minimum-energy positions. Ultimately, all possible combinations of the vinyl groups in these low-energy positions were accounted for in the GED model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号