首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Streaming potential is created when an electrolyte solution is forced to flow pass a charged surface. For an uncoated fused silica capillary, the streaming potential is measured between the inlet and outlet vials while applying a pressure across the capillary. The changes in streaming potential can be used to characterize the properties of the capillary inner surface. In this work, HCl, NaCl, and NaOH solutions ranging from 0.4 to 6 mM were used as the background electrolyte (BGE) at temperatures of 15 to 35 °C for the mesurements. The streaming potential decreases with the increase in BGE concentration, and the trend is amplified at higher temperatures. When buffer solutions in the pH range of 1.5 to 12.7 were used as the BGE, streaming potential was shown to be sensitive to changes in pH but reaches a maximum at around 9.5. At pH < 3.3, no streaming potentials were observed. The pH of zero surface charge (streaming potential equals 0) changes with temperature, and is measured to be 3.3 to 3.1 when the temperature is changed from 15 to 35°C. Zeta potentials can be calculated from the measured streaming potential, conductivity, and the solution viscosity. Surface charge densities were calculated in this work using the zeta potentials obtained. We demonstrated that capillary surface conditions can significantly change the streaming potential, and with three different solutions, we showed that analyte-dependent adsorption can be monitored and mitigated to improve the peak symmetry and migration times reproducibility.  相似文献   

2.
Capillary electrophoresis methods for the enantioresolution of two beta-blockers possessing two chiral centers--labetalol and nadolol--were developed using electrokinetic chromatography. These methods were based on the addition of sulfated beta-cyclodextrins (S-betaCD) as chiral selectors to the background electrolyte (BGE). Different operating parameters (pH and ionic strength of the BGE, concentration of S-beta-CD) were investigated using a normal or reversed polarity mode. A complete resolution of the four isomers of labetalol was obtained either at the cathode or at the anode according to the pH of the BGE. The resolution of nadolol was observed whatever polarity of the applied voltage but a baseline separation of the four enantiomers within a time of analysis appropriate to routine assay was only obtained at the anode. This optimal separation was performed using high concentrations of chiral additive in an acidic pH buffer of low molarity. Besides the complete enantiomeric separation of the beta-blockers studied, the interest of the proposed methods is to permit a reversal of the migration order of the different enantiomers. This could be of high interest in quality control for the study of enantiomeric purity, which is now required for the development of drugs and chemicals.  相似文献   

3.
The chiral resolution of the environmental pollutants by capillary electrophoresis is reviewed. Various aspects of the chiral resolution such as chiral selectors, optimization of capillary electrophoresis conditions including composition of the background electrolyte (BGE), pH of the BGE, ionic strength of the BGE, structures and types of the chiral selectors, applied voltage, temperature, structures of the chiral pollutants, use of organic modifiers and other parameters are presented. Furthermore, detection, sample treatment, validation of the methods, and the chiral recognition mechanisms, have been discussed.  相似文献   

4.
Phosphinic pseudopeptides (i.e., peptide isosteres with one peptide bond replaced by a phosphinic acid moiety) were analyzed and physicochemically characterized by capillary zone electrophoresis in the pH range of 1.1-3.2, employing phosphoric, phosphinic, oxalic and dichloroacetic acids as background electrolyte (BGE) constituents. The acid dissociation constant (pK(a)) of phosphinate group in phosphinic pseudopeptides and ionic mobilities of these analytes were determined from the pH dependence of their effective electrophoretic mobilities corrected to standard temperature and constant ionic strength of the BGEs. It was shown that these corrections are necessary whenever precise mobility data at very low pH are to be determined. Additionally, it was found that the ionic mobilities of the phosphinic pseudopeptides and pK(a) of their phosphinate group are affected by the BGE constituent used. The variability of migration behavior of the pseudopeptides can be attributed to their ion-pairing formation with the BGE components.  相似文献   

5.
A method is developed for the determination of a large number of airborne and vehicle-emitted low-molecular-mass mono- and dicarboxylic acids using capillary electrophoresis with indirect UV detection. A background electrolyte (BGE) consisting of 2,6-naphthalenedicarboxylic acid and tetradecylmethylammonium bromide, adjusted to pH 6.2 with 2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol, is employed. Separations are robust using the buffered BGE, proper rinse steps, and constant current mode with migration time variations less than 3% RSD on a day-to-day basis, using different capillaries and performed by different analysts. Detection limits are at the tens of μg/l level using pressure injection. A comparison of the CE method with ion chromatography is also made.  相似文献   

6.
Sample adsorption to the inner surface of fused silica capillaries is a common problem in CE when analyzing macromolecules and is harmful to the analysis. We previously utilized the pH hysteresis effect of fused silica to facilitate electrophoresis of the strongly adsorbing protein β(2) gpI in plain-fused silica capillaries at neutral pH. In the present paper, the effect of different pretreatments of the capillary on the adsorption of the β(2) -glycoprotein I has been investigated using electroosmosis markers, SDS mobilization, and imaging based on indirect immunofluorescence microscopy for direct visualization. The amount of β(2) gpI adsorbed on the surface was probed using all these independent techniques after electrophoresis at neutral pH on capillaries pretreated with HCl, background electrolyte (BGE), and NaOH. BGE pretreatment was included as a positive control. We found that 80% or more of the starting material was adsorbed to the inner surface of the silica capillaries during electrophoresis after pretreatment with only BGE or with NaOH, but after acidic pretreatment the loss was consistently less than 20%. NaOH most efficiently removes adsorbed protein between runs. A theoretical calculation of the pH change of the BGE showed that electrolysis affects the pH more than the deprotonation of silanols during electrophoresis. We conclude that acidic pretreatment of fused silica capillaries diminishes adsorption of β(2) gpI by decreasing charge-dependent wall adsorption.  相似文献   

7.
Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (Cmax/C0) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, Cmax/C0 increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).  相似文献   

8.
林秀丽  李关宾  主沉浮  吴培  关亚风 《色谱》2001,19(2):109-111
 建立了一种以L 白氨酸为手性选择剂用毛细管区带电泳法快速分离 12种手性药物的方法。实验结果表明 ,手性对映体的分离度受L 白氨酸浓度和缓冲液 pH的影响。在含有 70mmol/LL 白氨酸 ,5 0mmol/L硼砂 (pH9.0 )的溶液中 ,12种手性药物在 11min之内得到了基线分离。  相似文献   

9.
Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced “nanobody” EGa1, the binding fragment of a heavy-chain-only antibody. EGa1 is an antagonist of the epidermal growth factor receptor (EGFR), which is overexpressed on the surface of tumor cells. Using a background electrolyte (BGE) of 50 mM sodium phosphate (pH 8.0) in combination with a polybrene-poly(vinylsulfonic acid) capillary coating, CE analysis of EGa1 showed the presence of at least three components. Affinity of the EGa1 components towards the extracellular domain of EGFR was assessed by adding different concentrations (0–12 nM) of the receptor to the BGE while measuring the effective electrophoretic mobility of the respective EGa1 components. Binding curves obtained by plotting electrophoretic mobility shifts as a function of receptor concentration, yielded dissociation constants (Kd) of 1.65, 1.67, and 1.75 nM for the three components, respectively; these values were comparable to the Kd of 2.1 nM obtained for the bulk EGa1 product using a cellular assay. CE with mass spectrometry (MS) detection using a BGE of 25 mM ammonium acetate (pH 8.0) revealed that the EGa1 sample comprised of significant amounts of deamidated, bisdeamidated and N-terminal pyroglutamic acid products. CE–MS using a BGE of 100 mM acetic acid (pH 2.8) in combination with a polybrene–dextran sulfate–polybrene capillary coating demonstrated the additional presence of minor products related to incomplete removal of the signal peptide from the produced nanobody. Combining the results obtained from affinity CE and CE–MS, it is concluded that the EGa1 nanobody product is heterogeneous, comprising highly-related proteins that exhibit very similar affinity towards EGFR.  相似文献   

10.
Capillary zone electrophoresis (CZE) was used for characterisation of soil humic acid (HA) fractions obtained by coupling size-exclusion chromatography with polyacrylamide gel electrophoresis, on the basis of their molecular size and electrophoretic mobility. CZE was conducted using several low alkaline buffers as background electrolyte (BGE): 50 mM carbonate, pH 9.0; 50 mM phosphate, pH 8.5; 50 mM borate, pH 8.3; 50 mM Tris-borate+1 mM EDTA+7 M urea+0.1% sodium dodecyl sulphate (SDS), pH 8.3. Independently of BGE conditions, the effective electrophoretic mobility of HA fractions were in good agreement with their molecular size. The better resolution of HA were obtained in Tris-borate-EDTA buffer with urea and SDS. This results indicated that CZE, mostly with BGE-contained disaggregating agents, is useful for separating HAs in fractions with different molecular sizes.  相似文献   

11.
Enantioseparation of N-tert.-butyloxycarbonyl amino acids (N-t-Boc-Aas) with teicoplanin chiral selector was performed in two different separation systems: A teicoplanin-based chiral stationary phase (CSP-TE) was used in reversed-phase HPLC, and the same chiral selector (CS) was added into a background electrolyte (BGE) in HPCE. The enantioselective interaction with the same CSP/CS can be influenced by several factors, such as mobile phase/background electrolyte composition: the buffer concentration, pH, the CS concentration, the presence of organic modifiers. In addition, the charge of the chiral selector related to the charge of the analyte and to EOF are important variables in CE. The effect of these parameters on enantioselectivity and enantioseparation of selected N-t-Boc-Aas was studied. The presence of a sufficient concentration (1% solution) of a triethylamine acetate buffer in the mobile phase was shown to be essential for enantioseparation of these blocked amino acids in HPLC. A certain concentration of teicoplanin aggregates (along with teicoplanin molecules) in the BGE is required to obtain enantioseparation of N-t-Boc-Aas in HPCE.  相似文献   

12.
Uncharged cyclodextrins were tested as chiral selectors for the enantiomeric separation of 13 glycyl dipeptides with capillary electrophoresis. Initial experiments were performed on 10 mmol/L of a cyclodextrin in 0.1 mol/L phosphoric acid -0.088 mol/L triethanolamine. Some of the resolved dipeptides were nonaromatic, which is noteworthy since, to our knowledge, no examples of the separation of small, nonaromatic molecules have been published. Mobility difference plots for Gly-DL-Leu and Gly-DL-Phe with heptakis(2,6-di-O-methyl)-beta-cyclodextrin showed relatively flat profiles in a large concentration range, which is an advantage for the development of robust quantitative analytical methods. The use of a background electrolyte (BGE) solution with pH 3.0 gave irreproducible results for two of the dipeptides, the acidic Gly-DL-Asp and Gly-DL-Glu; this pH is not advisable for the development of robust methods for these two peptides. The need for purer chiral selectors was demonstrated by comparing different batches of heptakis(2,6-di-Omethyl)-beta-cyclodextrin from the same supplier. A BGE consisting of malonic acid and triethanolamine was introduced to give better buffer capacity than the original BGE at pH 3.0.  相似文献   

13.
Gotti R  Fiori J  Mancini F  Cavrini V 《Electrophoresis》2005,26(17):3325-3332
Nitromusks used as fragrances in a variety of personal-care products, cleansers, and domestic deodorants, including incense sticks, are neutral nitro aromatic compounds; some of these have been reported as photosensitizers. In this work, their analysis was performed by capillary electrophoresis (CE) in a methanol-based background electrolyte (BGE). In particular, a 10 mM solution of citric acid in methanol was used; under these conditions the strong suppression of the electroosmotic flow favored the use of negatively charged surfactants as additives for the anodic migration of the studied analytes. To this end, sodium taurodeoxycholate (TDC) was supplemented at high concentration (190 mM) to the organic background electrolyte (BGE), showing strong indication of the ability to give micelle-like aggregates. Since nitromusks are characterized by the presence of a nitroaromatic ring with low charge density, their association with TDC aggregates can be ascribed to donor-acceptor interactions. Separation of musk xylene, musk ketone, and the banned musk moskene and musk ambrette was obtained under full nonaqueous BGE; the addition of relatively small water percentages (15% v/v) was found to be useful in improving the separation of pairs of adjacent peaks. Under optimized conditions (190 mM sodium TDC in methanol-water, 85-15 v/v containing citric acid 10 mM) the system was applied to the analysis of nitromusks in incense sticks extracted with methanol. The results were compared with those obtained by the analysis of the same samples using gas chromatography with mass detector. The expected different selectivity of separation obtained using the two techniques can be useful in the unambiguous determination of the analytes; furthermore, a substantial accord of the preliminary quantitative results achieved with the two methods was assumed as the confirmation of the potential reliability of CE performed with high percentage of organic solvent.  相似文献   

14.
Ali I  Aboul-Enein HY 《Electrophoresis》2003,24(12-13):2064-2069
The chiral resolution of baclofen was achieved by capillary electrophoresis using a fused-silica capillary (60 cm x 75 microm ID). The background electrolyte (BGE) was phosphate buffer (pH 7.0, 50 mM)-acetonitrile (95:5 v/v) containing 10 mM beta-cyclodextrin. The applied voltage was 15 kV. The values of alpha and R(s) were 1.06 and 1.00, respectively. The electrophoretic conditions were optimized varying the pH and the ionic strength of the BGE, concentrations of beta-cyclodextrin and acetonitrile and the applied voltage.  相似文献   

15.
A fast, convenient and sensitive method of capillary zone electrophoresis (CZE) and indirect UV detection was proposed for the determination of 16 amino acids. p-Aminobenzoic acid (PAB) was selected as a background electrolyte (BGE). An isolated cell included a BGE buffer part and an electrode buffer one, which were jointed with a glass frit. The isolated cell can prevent PAB from the electrode reaction and improve the stability of the detection baseline. The separation conditions of amino acids were investigated, such as different BGEs, BGE concentration, buffer pH and electroosmotic flow (EOF) modifiers. Under the selected separation conditions, 14 amino acid peaks could be separated in 12 min. The detection limits of the amino acids were in the range of 1.7 - 4.5 micromol/L. The isolated cell is suitable for reagents reacting on the electrodes in capillary electrophoresis. The proposed method has been successfully applied to the determination of the amino acids in tobacco samples.  相似文献   

16.
Previous work has demonstrated proof-of-concept for carrying out the clinically useful Jaffe reaction between creatinine and picrate within a capillary tube using electrophoretically mediated microanalysis (EMMA). Here, it is shown that careful control of reagent plug length as well as concentration and pH of the background electrolyte (BGE) can result in a marked improvement in the sensitivity of this assay. Increasing the length of the picrate reagent zone is shown to give rise to as much as a 3–4-fold enhancement, and increasing the concentration and/or pH of the borate buffer also results in an additional, albeit modest, improvement in sensitivity. Interestingly, borate BGE concentrations approaching 100 mM give rise to an unexplained drop in reaction efficiency, an effect which can be avoided by utilizing lower borate concentration with higher pH. The improvements appear to primarily minimize electrodispersion of the picrate reagent, allowing higher picrate concentration in the reaction zone. The same conditions also appear to minimize the electrodispersion of the in-line product as well. With optimized EMMA parameters, the sensitivity of the in-line Jaffe chemistry can be enhanced to an extent that there is no need for the two capillary “high sensitivity” detection system required in previous work. Using optimized conditions, three different human serum samples spanning the expected clinical range of creatinine concentrations were successfully analyzed. Overall, this work illustrates the importance of systematically characterizing the conditions under which EMMA analyses are carried out.  相似文献   

17.
At concentrations of 100 mM or higher the chemical nature of both the cation and anion in the background electrolyte (BGE) can be varied to manipulate the migration times of protonated aniline cations. Significant differences were noted with Li+, Na+ and K+ for capillary electrophoretic runs carried out at pH 3. However, much greater differences in migration times were observed at acidic pH values when the BGE contained protonated cations of aliphatic amines. Analyte migration became progressively slower in the series: methylamine, diethylamine, diethylamino ethanol and triethylamine. A major part of this effect was attributed to an opposing electroosmotic flow (EOF) resulting from a positively-charged coating of the capillary surface with the amine cations in the BGE via a dynamic equilibrium. The amine cations also interact in solution with the analyte ions to reduce their electrophoretic mobilities. Migration times of anilines could be varied systematically over a broad range according to the BGE amine cation selected. Excellent separations of seven closely-related anilines were obtained with the new system.  相似文献   

18.
The present study reports a novel method for the separation of the high-molecular-weight anionic polysaccharides, iota, kappa, and lambda carrageenans, in capillary electrophoresis (CE). Carrageenan samples are first derivatised with 9-aminopyrene-1,4,6-trisulfonic acid (APTS), separated in an ammonium acetate background electrolyte (BGE) and detected with laser-induced fluorescence (LIF). The effects of changes of instrumental parameters (temperature, injection mode, field strength) and the composition of the BGE (concentration and pH) are reported, and are explained in terms of the physical chemistry of the BGE and the biopolymers. Optimal separation conditions for kappa, iota, and lambda carrageenans, including an APTS internal standard, were found in a polyvinyl alcohol coated capillary with an ammonium acetate BGE of low concentration (25 mM) and moderate pH (8.0). This BGE gave the best reproducibility in tests on iota/kappa mixtures, with relative standard deviations (RSDs) in migration times and normalised peak areas (relative to the APTS internal standard) of less than 0.1% and 1%, respectively. Using this BGE at 50 degrees C and a voltage of 30 kV, all three carrageenan subtypes were separated in a run time of 3 min.  相似文献   

19.
A CE–MS method has been developed to detect trace levels of potentially genotoxic alkyl halides. After derivatization of the target components with 4-dimethylaminopyridine (DMAP) or butyl 1-(pyridinyl-4yl) piperidine 4-carboxylate (BPPC), the natively positively charged derivatives are pre-concentrated by applying electrokinetic injection and separated by a highly efficient CZE method using a background electrolyte (BGE) consisting of 100 mM of TRIS adjusted to pH 2.5 with phosphoric acid. Using a sheath liquid interface, subsequent MS detection allows highly specific and sensitive analysis of alkyl halides.  相似文献   

20.
Summary Velocity-difference induced focusing (V-DIF) of analytes by a dynamic pH junction represents a simple yet effective on-line preconcentration method to improve concentration sensitivity in capillary electrophoresis (CE). Differences in buffer type, pH and conductivity between sample and background electrolyte (BGE) segments of the capillary are properties used to optimize purine focusing within a multi-section electrolyte system. This method permits the injection of large volumes of sample (up to 450 nL or about 18% of capillary length), resulting in over a 50-fold improvement in sensitivity with baseline resolution. The limit of detection (S/N=3) for xanthine is determined to less than 4.0×10−8 M under optimum conditions when using UV detection. Analysis of micromolar amounts of xanthine in pooled urine is also demonstrated without sample pretreatment. A dual mechanism involving dynamic pH and isotachophoretic modes is proposed to enhance analyte focusing performance when employing buffer pH junctions based on different types of electrolyte co-ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号