首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Using the continuum mechanical model of solid-solid phase transitions of Abeyaratne and Knowles, this paper examines the large time dynamical behavior of a phase boundary. The problem studied concerns a semi-infinite elastic bar initially in an equilibrium state that involves two material phases separated by a phase boundary at a given location. Interaction between the phase boundary and the elastic waves generated by an impact at the end of the bar and subsequent reflections is studied in detail, and an exact solution of the dynamical problem, which is governed by a nonlinear resursive formula, is obtained. It is shown that the phase boundary reaches a new equilibrium state for large time. Numerical calculations based on the recursive formula are carried out to illustrate analytical results.Address after August 15, 1995: Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA.  相似文献   

2.
The dynamic processes in an elastic bar composed of a material, which is capable of undergoing phase transitions, are under consideration. We use a model of an elastic body with non-convex strain energy potential. The bar with variable cross-sectional area is considered. Propagation of the phase boundary along the bar loaded with time-dependent tensile forces is investigated. It is assumed that the phase boundary moves at a variable speed. The problem is solved analytically by using two approaches, namely, the full dynamic approach and the quasi-static (kinetic) approach. The results obtained by means of these two methods are compared.  相似文献   

3.
The reflection and refraction of anti-plane shear waves from an interface separating half-spaces with different moduli is well understood in the linear theory of elasticity. Namely, an oblique incident wave gives rise to a reflected wave that departs at the same angle and to a refracted wave that, after transmission through the interface, departs at a possibly different angle. Here we study similar issues for a material that admits mobile elastic phase boundaries in anti-plane shear. We consider an energy minimal equilibrium state in anti-plane shear involving a planar phase boundary that is perturbed due to an incident wave of small magnitude. The phase boundary is allowed to move under this perturbation. As in the linear theory, the perturbation gives rise to a reflected and a refracted wave. The orientation of these waves is independent of the phase boundary motion and determined as in the linear theory. However, the phase boundary motion affects the amplitudes of the departing waves. Perturbation analysis gives these amplitudes for general small phase boundary motion, and also permits the specification of the phase boundary motion on the basis of additional criteria such as a kinetic relation. A standard kinetic relation is studied to quantify the subsequent energy partitioning and dissipation on the basis of the properties of the incident wave.  相似文献   

4.
A macroscopic coupled stress-diffusion theory which accounts for the effects of nonlinear material behaviour, based on the framework proposed by Cahn and Larché, is presented and implemented numerically into the finite element method. The numerical implementation is validated against analytical solutions for different boundary valued problems. Particular attention is payed to the open system elastic constants, i.e. those derived at constant diffusion potential, since they enable, under circumstances, the equilibrium composition field for any generic chemical-mechanical coupled problem to be obtained through the solution of an equivalent elastic problem. Finally, the effects of plasticity on the overall equilibrium state of the coupled problem solution are discussed.  相似文献   

5.
The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed–fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.  相似文献   

6.
7.
This paper considers a unit elastic cube, made of compressible isotropic material, with its faces subjected to certain dead-load tractions that produce a possible equilibrium state of non-uniform dilatation. It is seen that, at the considered equilibrium state, the cube material acquires properties of pseudo-transverse isotropy. Conditions are obtained for the stability of such an equilibrium state with respect to superimposed pure homogeneous deformations having principal directions parallel to the cube edges. The problem of non-uniqueness of the cube dilatation states is also addressed, and non-uniqueness is illustrated in an example application dealing with an isotropic cube made of the Blatz-Ko material. The nature and the stability features of these equilibrium states are studied in depth.  相似文献   

8.
A hyperelastic material is here said to be of class Hm if the elastic potential is a homogeneous function of order m + 1 in the components of the Lagrangian displacement gradient. It is shown that a single solution to a boundary value problem generates an infinite family of solutions to a family of related boundary value problems. Assuming that a solution to a boundary value problem exists, it is shown that it is unique provided that the material is stable in the sense of Hill in a deleted neighbourhood of the stress-free state. A minimum theorem concerning the strain energy and the virtual work of the prescribed forces is established for the equilibrium configurations, and a maximum theorem concerning the virtual work of the prescribed surface displacements and the complementary stress energy is established for compatible stress fields. As an application, upper and lower bounds are found for the torsional stiffness of a cylindrical bar of square cross section under infinitesimal deformation.  相似文献   

9.
吴柏生 《力学学报》1991,23(3):347-354
基于[1]的弹性曲杆的平衡方程,本文研究了矩形横截面细长杆在轴压下的后屈曲行为。设横截面的边长比为 1:2δ,使用 Poincare-Keller 的打靶法并引进坐标的伸缩变换,研究了δ在 δ_0=1 附近的情形。当δ≠1 时,发现了杆平衡态的二次分叉。我们也给出了原始后屈曲解支及二次分支的渐近表示并分析了各个解支的稳定性。  相似文献   

10.
This study presents an analytical solution to elastic field in a roller-guided panel of symmetric cross-ply laminated composite material. The mixed boundary value two-dimensional plane stress elasticity problem is formulated in terms of a single displacement potential function. This reduces the problem to the solution of a single fourth order partial differential equation of equilibrium as the other equilibrium equation is satisfied automatically. The solution is obtained in terms of an infinite Fourier series. To present some numerical results, a panel of glass/epoxy laminated composite is considered and different components of stress and displacement at different sections of the panel are presented graphically. To justify the present analytical solution, it is compared with the finite element solution obtained by using the commercial software ANSYS. It is found that the two solutions agree well with each other. This ensures that the formulation developed in this study based on the displacement potential approach can be used to obtain analytical solution of an elastic field in structural elements of laminated composite under any mode of boundary conditions prescribed in terms of either stress, displacement or any combination of these.  相似文献   

11.
建立了饱和多孔介质大变形分析的一种有限元-有限体积混合计算方法.将饱和多孔介质视为由固体骨架和孔隙水组成的两相体,其基本方程包括动力平衡方程和渗流连续方程.基于u-p假定和更新的Lagrange方法,饱和多孔介质的动力平衡方程在空间域内采用有限元方法进行离散,而渗流连续方程在空阃域内则采用有限体积法进行离散.通过两个数值算例,一维有限弹性固结和动力荷载作用下堤坝动力响应的计算,验证了该方法的有效性.  相似文献   

12.
The fully dynamical motion of a phase boundary is considered for a specific class of elastic materials whose stress-strain relation in simple shear is nonmonotone. It is shown that a preexisting stationary phase boundary in a prestressed layer composed of such a material can be set in motion by a finite amplitude shear pulse. An infinity of solutions is possible according to the present theory, each of which is characterized by different reflected and transmitted waves at the phase boundary. A global analysis gives exact bounds on the size of the solution family for different shear pulse amplitudes. For certain ranges of shear pulse amplitudes a completely reflecting solution will exist, while for an in general different range of shear pulse amplitudes a completely transmitting solution will exist. The properties of these different solutions are examined. In particular, it is observed that the ringing of a shear pulse between the external boundaries and the internal phase boundary gives rise to periodic phase boundary motion for both the case of a completely reflecting phase boundary and a completely transmitting phase boundary.  相似文献   

13.
This paper presents an effective numerical method for solving elastic wave propagation problems in an infinite Timoshenko beam on viscoelastic foundation in time domain. In order to use the finite element method to model the local complicated material properties of the infinite beam as well as foundation, two artificial boundaries are needed in the infinite system so as to truncate the infinite beam into a finite beam. This treatment requires an appropriate boundary condition derived and applied on the corresponding truncated boundaries. For this purpose, the time-dependent equilibrium equation of motion for beam is changed into a linear ordinary differential equation by using the operator splitting and the residual radiation methods. Simultaneously, an artificial parameter is employed in the derivation. As a result, the high-order accurate artificial boundary condition, which is local in time, is obtained by solving the ordinary differential equation. The numerical examples given in this paper demonstrate that the proposed method is of high accuracy in dealing with elastic wave propagation problems in an infinite foundation beam.  相似文献   

14.
A variational method is employed to obtain governing equations and boundary conditions describing finite strain equilibrium configurations of elastomeric gels. Three situations are considered: a liquid saturated gel, an unsaturated gel, and a gel in equilibrium with a vapor of its own liquid. Surface tractions can lead to equilibrium transitions between these cases. The liquid saturated gel is regarded as immersed in a liquid bath. If this bath becomes depleted, then the gel is unsaturated. The degree of unsaturation - a measure of the amount of liquid that would restore a state of saturation - affects the subsequent mechanical behavior. If the unsaturated system is further allowed to condense or evaporate its liquid component at the gel surface, then a new state of equilibrium is achieved. The transition between the unsaturated case and the case of being in equilibrium with the vapor phase corresponds to the chemical potential variable of the gel changing its value from one that is determined by a volume constraint to the value of the chemical potential in the vapor phase. A finite element method is created on the basis of the variational method and demonstrated in the context of eversion, a deformation that imposes very large finite strains. Liquid migration within the gel is not modeled as our focus is on equilibrium states that occur after all such non-equilibrium processes come to rest.  相似文献   

15.
The elastoplastic state of thin cylindrical shells weakened by a curvilinear (circular) hole is analyzed considering finite deflections. The shells are made of an isotropic homogeneous material. The load is internal pressure of given intensity. The distributions of stresses (strains, displacements) along the hole boundary and in the zone of their concentration are studied. The results obtained are compared with solutions that account for physical (plastic strains) or geometrical (finite deflections) nonlinearity alone and with a numerical linear elastic solution. The stress-strain state around a circular hole is analyzed for different geometries in the case where both nonlinearities are taken into account __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 115–123, December, 2006.  相似文献   

16.
The fully dynamical motion of a phase boundary is examined for a specific class of elastic materials whose stress-strain relation in simple shear is nonmonotone. Previous work has shown that a preexisting stationary phase boundary in such a material can be set in motion by a finite amplitude shear pulse and that an infinity of solutions is possible according to the present theory. In this work, these solutions are examined in detail from the perspective of energy and dissipation. It is shown that there exists at most two solutions which involve no dissipation (corresponding to conservation of mechanical energy). It is also shown that there exists one solution that maximizes the mechanical energy dissipation rate. The total mechanical energy remaining in the dynamical fields after one such pulse-phase boundary encounter is shown to exceed the total methanical energy after either an energy minimal quasi-static motion or a maximally dissipative quasi-static motion.  相似文献   

17.
This study is concerned with isothermal stability of equilibrium of evolving laminated microstructures in pseudo-elastic solids with a multi-well free energy function. Several possible modes of instability associated with phase transition between energy wells are analysed. The related rate-independent dissipation is included by imposing a threshold value on the thermodynamic driving force. For a homogenized phase-transforming laminate with no length scale it is shown that localization instability is a rule in case of a non-zero interfacial jump of a directional nominal stress, irrespectively of actual boundary conditions. A stabilizing effect of elastic micro-strain energy at the boundary of the localization zone is demonstrated for laminates of finite spacing. Illustrative numerical examples are given for an evolving austenite–martensite laminate in a crystal of CuZnAl shape memory alloy.  相似文献   

18.
A bifurcation of an equilibrium state for ideal fibre-reinforced material is discussed. It is assumed that the material is elastic, locally transversely isotropic, incompressible and inextensible in the direction of fibres. On a finite state of strain an arbitrary field of small displacements is superposed and a set of governing equations for the perturbed state is derived.As an example a stability problem of a rectangular block. Objected to a finite, homogeneous deformation is considered. A discussion of the results is focused on the influence on the stability of the pressure applied in the direction of fibres.Due to the assumption of inextensibility this pressure has no influence on the state of strain, but it is shown that it may cause a loss of stability.  相似文献   

19.
The stability of an infinite elastic plate in supersonic gas flow is investigated taking into account the presence of the boundary layer formed on the plate surface. The effect of viscous and temperature disturbances of the boundary layer on the behavior of traveling waves is studied at large but finite Reynolds numbers. It is shown that in the case of the small boundary layer thickness viscosity can have both stabilizing and destabilizing effect depending on the phase velocity of disturbance propagation.  相似文献   

20.
王挺  张蕊  郭然 《固体力学学报》2021,42(4):490-500
采用含界面相Voronoi单元有限元法,根据广义胡克定律,计算了在给定边界条件下,颗粒增强复合材料的等效弹性常数。建立了含多个随机分布的椭圆形夹杂及界面相的VCFEM模型,分析了夹杂体分比,界面相厚度和界面相弹性模量等因素对颗粒增强复合材料等效弹性常数的影响,并利用普通有限元方法对比验证。结果表明,当界面相弹性模量小于基体与夹杂时,材料的等效弹性模量会随着界面相厚度的增大而减小,随着夹杂体分比的增大而减小,并且界面过薄时,材料的等效弹性模量会随着夹杂体分比的增大而增大;当界面相弹性模量大于基体或夹杂时,材料的等效弹性模量会随着夹杂体分比和界面相厚度的增大而增大。而界面相的厚度和弹性模量对材料的等效泊松比的影响较小,材料的等效泊松比主要受夹杂体分比的影响,与其呈反比关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号