首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.  相似文献   

2.
Based on viscoelastic Kelvin.model and:nonlocal relationship of strain and stress, a nonlocal constitutive relationshila of viscoelasticity is obtained and the strain response of a bar in tension is studied, By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form s.olution of strain field of the bar is obtained.: The creep process of the bar is presented: When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity  相似文献   

3.
The deformation of an infinite bar subjected to a self-equilibrated load distribution is investigated using the peridynamic formulation of elasticity theory. The peridynamic theory differs from the classical theory and other nonlocal theories in that it does not involve spatial derivatives of the displacement field. The bar problem is formulated as a linear Fredholm integral equation and solved using Fourier transform methods. The solution is shown to exhibit, in general, features that are not found in the classical result. Among these are decaying oscillations in the displacement field and progressively weakening discontinuities that propagate outside of the loading region. These features, when present, are guaranteed to decay provided that the wave speeds are real. This leads to a one-dimensional version of St. Venant's principle for peridynamic materials that ensures the increasing smoothness of the displacement field remotely from the loading region. The peridynamic result converges to the classical result in the limit of short-range forces. An example gives the solution to the concentrated load problem, and hence provides the Green's function for general loading problems.  相似文献   

4.
Well-posedness results for the state-based peridynamic nonlocal continuum model of solid mechanics are established with the help of a nonlocal vector calculus. The peridynamic strain energy density for an elastic constitutively linear anisotropic heterogeneous solid is expressed in terms of the field operators of that calculus, after which a variational principle for the equilibrium state is defined. The peridynamic Navier equilibrium equation is then derived as the first-order necessary conditions and are shown to reduce, for the case of homogeneous materials, to the classical Navier equation as the extent of nonlocal interactions vanishes. Then, for certain peridynamic constitutive relations, the peridynamic energy space is shown to be equivalent to the space of square-integrable functions; this result leads to well-posedness results for volume-constrained problems of both the Dirichlet and Neumann types. Using standard results, well-posedness is also established for the time-dependent peridynamic equation of motion.  相似文献   

5.
6.
The peridynamic model is a framework for continuum mechanics based on the idea that pairs of particles exert forces on each other across a finite distance. The equation of motion in the peridynamic model is an integro-differential equation. In this paper, a notion of a peridynamic stress tensor derived from nonlocal interactions is defined. At any point in the body, this stress tensor is obtained from the forces within peridynamic bonds that geometrically go through the point. The peridynamic equation of motion can be expressed in terms of this stress tensor, and the result is formally identical to the Cauchy equation of motion in the classical model, even though the classical model is a local theory. We also establish that this stress tensor field is unique in a certain function space compatible with finite element approximations.  相似文献   

7.
A thermodynamically consistent formulation of nonlocal damage in the framework of the internal variable theories of inelastic behaviours of associative type is presented. The damage behaviour is defined in the strain space and the effective stress turns out to be additively splitted in the actual stress and in the nonlocal counterpart of the relaxation stress related to damage phenomena. An important advantage of models with strain-based loading functions and explicit damage evolution laws is that the stress corresponding to a given strain can be evaluated directly without any need for solving a nonlinear system of equations. A mixed nonlocal variational formulation in the complete set of state variables is presented and is specialized to a mixed two-field variational formulation. Hence a finite element procedure for the analysis of the elastic model with nonlocal damage is established on the basis of the proposed two-field variational formulation. Two examples concerning a one-dimensional bar in simple tension and a two-dimensional notched plate are addressed. No mesh dependence or boundary effects are apparent.  相似文献   

8.
Convergence of Peridynamics to Classical Elasticity Theory   总被引:1,自引:0,他引:1  
The peridynamic model of solid mechanics is a nonlocal theory containing a length scale. It is based on direct interactions between points in a continuum separated from each other by a finite distance. The maximum interaction distance provides a length scale for the material model. This paper addresses the question of whether the peridynamic model for an elastic material reproduces the classical local model as this length scale goes to zero. We show that if the motion, constitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic stress tensor converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of the local deformation gradient tensor, as in the classical theory. This limiting Piola-Kirchhoff stress tensor field is differentiable, and its divergence represents the force density due to internal forces. The limiting, or collapsed, stress-strain model satisfies the conditions in the classical theory for angular momentum balance, isotropy, objectivity, and hyperelasticity, provided the original peridynamic constitutive model satisfies the appropriate conditions.   相似文献   

9.
In this paper, we carry out further mathematical studies of nonlocal constrained value problems for a peridynamic Navier equation derived from linear state-based peridynamic models. Given the nonlocal interactions effected in the model, constraints on the solution over a volume of nonzero measure are natural conditions to impose. We generalize previous well-posedness results that were formulated for very special kernels of nonlocal interactions. We also give a more rigorous treatment to the convergence of solutions to nonlocal peridynamic models to the solution of the conventional Navier equation of linear elasticity as the horizon parameter goes to zero. The results are valid for arbitrary Poisson ratio, which is a characteristic of the state-based peridynamic model.  相似文献   

10.
A one-dimensional stress-based elasticity model with limited strain extensibility is developed in this paper, based on thermodynamics arguments. Such nonlinear elastic models can be used to model certain rubber-like and biological materials with limiting chain extensibility. The derived constitutive function is a non-smooth piecewise expression, which can be regularized for numerical or physical considerations. This non-smooth constitutive expression is derived from a Gibbs potential. A three-dimensional extension of this stress-based model is also proposed in the paper. Some simple structural examples are investigated for a bar composed of this non-smooth elastic body. A homogeneous bar composed of this new class of nonlinear elastic material that is loaded is studied for different tension states, namely for concentrated or distributed axial loading. It is shown that the displacement limit extensibility can be observed at the structural scale, with finite or infinite axial load parameters.  相似文献   

11.
Integral-type nonlocal damage models describe the fracture process zones by regular strain profiles insensitive to the size of finite elements, which is achieved by incorporating weighted spatial averages of certain state variables into the stress–strain equations. However, there is no consensus yet how the influence of boundaries should be taken into account by the averaging procedures. In the present study, nonlocal damage models with different averaging procedures are applied to the modelling of fracture in specimens with various boundary types. Firstly, the nonlocal models are calibrated by fitting load–displacement curves and dissipated energy profiles for direct tension to the results of mesoscale analyses performed using a discrete model. These analyses are set up so that the results are independent of boundaries. Then, the models are applied to two-dimensional simulations of three-point bending tests with a sharp notch, a V-type notch, and a smooth boundary without a notch. The performance of the nonlocal approaches in modelling of fracture near nonconvex boundaries is evaluated by comparison of load–displacement curves and dissipated energy profiles along the beam ligament with the results of meso-scale simulations. As an alternative approach, elastoplasticity combined with nonlocal and over-nonlocal damage is also included in the comparative study.  相似文献   

12.
Zhang  Pei  Qing  Hai 《应用数学和力学(英文版)》2021,42(10):1379-1396

In this work, the static tensile and free vibration of nanorods are studied via both the strain-driven (StrainD) and stress-driven (StressD) two-phase nonlocal models with a bi-Helmholtz averaging kernel. Merely adjusting the limits of integration, the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique. The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process. In the numerical examples, the bi-Helmholtz kernel-based StrainD (or StressD) two-phase model shows consistently softening (or stiffening) effects on both the tension and the free vibration of nanorods with different boundary edges. The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models.

  相似文献   

13.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

14.
This paper develops a new peridynamic state based model to represent the bending of an Euler–Bernoulli beam. This model is non-ordinary and derived from the concept of a rotational spring between bonds. While multiple peridynamic material models capture the behavior of solid materials, this is the first 1D state based peridynamic model to resist bending. For sufficiently homogeneous and differentiable displacements, the model is shown to be equivalent to Eringen’s nonlocal elasticity. As the peridynamic horizon approaches 0, it reduces to the classical Euler–Bernoulli beam equations. Simple test cases demonstrate the model’s performance.  相似文献   

15.
采用近场动力学微分算子(Peridynamic Differential Operator, PDDO)理论建立正交各向异性板热传导的非局部模型。通过构造近场动力学函数,将边界条件和热传导方程由局部微分形式转化为非局部积分形式,引入Lagrange乘子,采用变分分析对含裂纹正交各向异性板温度及裂纹尖端的热通量分布进行求解。通过对比算例,验证了该模型具有较好的收敛性和有效性。分析了正交各向因子、材料铺设角、裂纹倾角及间距对裂纹尖端热通量的影响。结果表明,基于PDDO建立的含裂纹正交各向异性板热传导模型,考虑了热传导问题中的非局部性,能有效提高计算精度,预测含裂纹板中裂纹尖端出现的奇异性。  相似文献   

16.
Fractional calculus is the mathematical subject dealing with integrals and derivatives of non-integer order. Although its age approaches that of classical calculus, its applications in mechanics are relatively recent and mainly related to fractional damping. Investigations using fractional spatial derivatives are even newer. In the present paper spatial fractional calculus is exploited to investigate a material whose nonlocal stress is defined as the fractional integral of the strain field. The developed fractional nonlocal elastic model is compared with standard integral nonlocal elasticity, which dates back to Eringen’s works. Analogies and differences are highlighted. The long tails of the power law kernel of fractional integrals make the mechanical behaviour of fractional nonlocal elastic materials peculiar. Peculiar are also the power law size effects yielded by the anomalous physical dimension of fractional operators. Furthermore we prove that the fractional nonlocal elastic medium can be seen as the continuum limit of a lattice model whose points are connected by three levels of springs with stiffness decaying with the power law of the distance between the connected points. Interestingly, interactions between bulk and surface material points are taken distinctly into account by the fractional model. Finally, the fractional differential equation in terms of the displacement function along with the proper static and kinematic boundary conditions are derived and solved implementing a suitable numerical algorithm. Applications to some example problems conclude the paper.  相似文献   

17.
Sun  Wei  Fish  Jacob  Zhang  Ga 《Meccanica》2020,55(4):681-699

Superposition of non-ordinary state-based peridynamics and finite element method for material failure simulations, including crack propagation and strain localization is developed. By this approach, a peridynamic model capable of effectively treating strong and weak discontinuities is superimposed in the critical regions over an underlying finite element mesh placed over the entire problem domain. A rigorous variational framework of coupling local finite element and nonlocal peridynamics approximations that is free of blending parameters is developed. Several numerical examples involving mixed-model fracture, three-dimensional adaptive crack propagation and strain localization induced ductile failure demonstrate the rational and efficiency of the proposed superposition-based coupling approach.

  相似文献   

18.
张恒  张雄  乔丕忠 《力学进展》2022,52(4):852-873
近场动力学采用非局部积分计算节点内力, 利用统一数学框架描述空间连续与非连续, 避免了非连续区局部空间导数引起的应力奇异, 数值上具有无网格属性, 可自然模拟材料结构的断裂问题. 本文概述了近场动力学的弹性本构力模型, 系统介绍了近场动力学临界伸长率、临界能量密度以及材料强度相关的键失效准则. 详细介绍了近场动力学在断裂力学领域的研究进展, 包括断裂参数能量释放率与应力强度因子的求解、J积分、混合型裂纹、弹塑性断裂、黏聚力模型、动态断裂、材料界面断裂以及疲劳裂纹扩展等. 最后讨论了断裂问题近场动力学研究的发展方向.   相似文献   

19.
Peridynamics is a nonlocal theory of continuum mechanics, which was developed by Silling (2000). Since then peridynamics has been applied to a variety of solid mechanics problems ranging from fracture, damage, failure to wave propagation, buckling, and detonation physics. Since the governing equation of peridynamics is an integro-differential equation, most of the treatment in the literature is often numerical. However, the analytical treatment is very important for the development of the peridynamic theory, which is continually developing at the present time. In this paper, peristatic and peridynamic problems for a 1D infinite rod are analytically investigated. We have developed a method to obtain a valid analytical solution starting from a formal analytical solution, which may be divergent. The primary contribution of the present paper is a systematic analytical treatment of peristatic and peridynamic problems for a 1D infinite rod. Additionally, dispersion curves and group velocities for the materials with three different micromoduli are also studied. It is found from the study that some peridynamic materials can have negative group velocities in certain regions of wavenumber. This indicates that peridynamics can be used for modeling certain types of dispersive media with anomalous dispersion such as the one discussed by Mobley (2007).  相似文献   

20.
We derive a novel integral equation relating the fluid pressure in a finger-like hydraulic fracture to the fracture width. By means of an asymptotic analysis in the small height to length ratio limit we are able to establish the action of the integral operator for receiving points that lie within three distinct regions: (1) an outer expansion region in which the dimensionless pressure is shown to be equal to the dimensionless width plus a small correction term that involves the second derivative of the width, which accounts for the nonlocal effects of the integral operator. The leading order term in this expansion is the classic local elasticity equation in the PKN model that is widely used in the oil and gas industry; (2) an inner expansion region close to the fracture tip within which the action of the elastic integral operator is shown to be the same as that of a finite Hilbert transform associated with a state of plane strain. This result will enable pressure singularities and stress intensity factors to be incorporated into analytic models of these finger-like fractures in order to model the effect of material toughness; (3) an intermediate region within which the action of the Fredholm integral operator of the first kind is reduced to a second kind operator in which the integral term appears as a small perturbation which is associated with a convergent Neumann series. These results are important for deriving analytic models of finger-like hydraulic fractures that are consistent with linear elastic fracture mechanics. Submitted to Journal of Elasticity on February 5, 2007. Re-submitted with revisions on May 30, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号