首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
For each Abelian groupG, a cardinal invariant χ(G) is introduced and its properties are studied. In the special caseG = ℤ n , the cardinalχ(ℤ n ) is equal to the minimal cardinality of an essential subset of ℤ n , i.e., a of a subsetA ⊂ ℤ n such that, for any coloring of the group ℤ n inn colors, there exists an infinite one-color subset that is symmetric with respect to some pointα ofA. The estimaten( n + l)/2 ≤χ(ℤ n ) < 2n is proved for alln and the relationχ(ℤ n ) =n(n + 1)/2 forn ≤ 3. The structure of essential subsets of cardinalityχ(ℤ n ) in ℤ n is completely described forn ≤ 3. Translated fromMatematicheskie Zametki, Vol. 64, No. 3, pp. 341–350, September, 1998.  相似文献   

2.
Let k be an algebraically closed field of characteristic p>0, W(k) its ring of Witt vectors and R a complete discrete valuation ring dominating W(k). Consider finite groups G≃ (ℤ/pℤ) n , p≥ 2, n≥1. In a former paper we showed that a given realization of such a G as a group of k-automorphisms of k[[z]] must satisfy some conditions in order to have a lifting as a group of R-automorphisms of R[[Z]]. In this note, we give for every G (all p≥ 2, n>1) a realization as an automorphism group of k[[z]] which ca be lifted as a group of R-automorphisms of R[[Z]] for suitable R. Received: 22 December 1998  相似文献   

3.
Let G be a finite group and X be a G-space. For a map f: X → ℝ m , the partial coincidence set A(f, k), k ≤ |G|, is the set of points xX such that there exist k elements g 1,…, g k of the group G, for which f(g 1 x) = ⋅⋅⋅ = f(g k x) holds. We prove that the partial coincidence set is nonempty for G = ℤ p n under some additional assumptions. Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 8, pp. 61–67, 2007.  相似文献   

4.
Hom(G, H) is a polyhedral complex defined for any two undirected graphsG andH. This construction was introduced by Lovász to give lower bounds for chromatic numbers of graphs. In this paper we initiate the study of the topological properties of this class of complexes. We prove that Hom(K m, Kn) is homotopy equivalent to a wedge of (nm)-dimensional spheres, and provide an enumeration formula for the number of the spheres. As a corollary we prove that if for some graphG, and integersm≥2 andk≥−1, we have ϖ 1 k (Hom(K m, G))≠0, thenχ(G)≥k+m; here ℤ2-action is induced by the swapping of two vertices inK m, and ϖ1 is the first Stiefel-Whitney class corresponding to this action. Furthermore, we prove that a fold in the first argument of Hom(G, H) induces a homotopy equivalence. It then follows that Hom(F, K n) is homotopy equivalent to a direct product of (n−2)-dimensional spheres, while Hom(F, K n) is homotopy equivalent to a wedge of spheres, whereF is an arbitrary forest andF is its complement. The second author acknowledges support by the University of Washington, Seattle, the Swiss National Science Foundation Grant PP002-102738/1, the University of Bern, and the Royal Institute of Technology, Stockholm.  相似文献   

5.
This note proves that, forF = ℝ, ℂ or ℍ, the bordism classes of all non-bounding Grassmannian manifoldsG k(F n+k), withk <n and having real dimensiond, constitute a linearly independent set in the unoriented bordism group N d regarded as a ℤ2-vector space.  相似文献   

6.
 Assume that G is a 3-colourable connected graph with e(G) = 2v(G) −k, where k≥ 4. It has been shown that s 3(G) ≥ 2 k −3, where s r (G) = P(G,r)/r! for any positive integer r and P(G, λ) is the chromatic polynomial of G. In this paper, we prove that if G is 2-connected and s 3(G) < 2 k −2, then G contains at most v(G) −k triangles; and the upper bound is attained only if G is a graph obtained by replacing each edge in the k-cycle C k by a 2-tree. By using this result, we settle the problem of determining if W(n, s) is χ-unique, where W(n, s) is the graph obtained from the wheel W n by deleting all but s consecutive spokes. Received: January 29, 1999 Final version received: April 8, 2000  相似文献   

7.
A (v, k, λ) difference family ((v, k, λ)-DF in short) over an abelian group G of order v, is a collection F=(Bi|i ∈ I} of k-subsets of G, called base blocks, such that any nonzero element of G can be represented in precisely A ways as a difference of two elements lying in some base blocks in F. A (v, k, λ)-DDF is a difference family with disjoint blocks. In this paper, by using Weil's theorem on character sum estimates, it is proved that there exists a (p^n, 4, 1)-DDF, where p = 1 (rood 12) is a prime number and n ≥1.  相似文献   

8.
An ergodic measure-preserving transformationT of a probability space is said to be simple (of order 2) if every ergodic joining λ ofT with itself is eitherμ×μ or an off-diagonal measureμ S , i.e.,μ S (A×B)=μ(AS ;−n ;B) for some invertible, measure preservingS commuting withT. Veech proved that ifT is simple thenT is a group extension of any of its non-trivial factors. Here we construct an example of a weakly mixing simpleT which has no prime factors. This is achieved by constructing an action of the countable Abelian group ℤ⊕G, whereG=⊕ i=1 2, such that the ℤ-subaction is simple and has centralizer coinciding with the full ℤ⊕G-action.  相似文献   

9.
Let φ(G),κ(G),α(G),χ(G),cl(G),diam(G)denote the number of perfect matchings,connectivity,independence number,chromatic number,clique number and diameter of a graph G,respectively.In this note,by constructing some extremal graphs,the following extremal problems are solved:1.max{φ(G):|V(G)|=2n,κ(G)≤k}=k[(2n-3)!!],2.max{φ(G):|V(G)|=2n,α(G)≥k}=[multiply from i=0 to k-1(2n-k-i)[(2n-2k-1)!!],3.max{φ(G):|V(G)|=2n,χ(G)≤k}=φ(T_(k,2n))T_(k,2n)is the Turán graph,that is a complete k-partite graphon 2n vertices in which all parts are as equal in size as possible,4.max{φ(G):|V(G)|=2n,cl(G)=2}=n1,5.max{φ(G):|V(G)|=2n,diam(G)≥2}=(2n-2)(2n-3)[(2n-5)!!],max{φ(G):|V(G)|=2n,diam(G)≥3}=(n-1)~2[(2n-5)!!].  相似文献   

10.
Let G be a finite abelian group and its Sylow p-subgroup a direct product of copies of a cyclic group of order p~r,i.e.,a finite homocyclic abelian group.LetΔ~n (G) denote the n-th power of the augmentation idealΔ(G) of the integral group ring ZG.The paper gives an explicit structure of the consecutive quotient group Q_n(G)=Δ~n(G)/Δ~(n 1)(G) for any natural number n and as a consequence settles a problem of Karpilovsky for this particular class of finite abelian groups.  相似文献   

11.
We assign to each pair of positive integers n and k ⩾ 2 a digraph G(n, k) whose set of vertices is H = {0, 1, ..., n − 1} and for which there is a directed edge from aH to bH if a k b (mod n). We investigate the structure of G(n, k). In particular, upper bounds are given for the longest cycle in G(n, k). We find subdigraphs of G(n, k), called fundamental constituents of G(n, k), for which all trees attached to cycle vertices are isomorphic.  相似文献   

12.
Chintamani  M. N.  Moriya  B. K.  Gao  W. D.  Paul  P.  Thangadurai  R. 《Archiv der Mathematik》2012,98(2):133-142
Let G be a finite abelian group (written additively) of rank r with invariants n 1, n 2, . . . , n r , where n r is the exponent of G. In this paper, we prove an upper bound for the Davenport constant D(G) of G as follows; D(G) ≤ n r + n r-1 + (c(3) − 1)n r-2 + (c(4) − 1) n r-3 + · · · + (c(r) − 1)n 1 + 1, where c(i) is the Alon–Dubiner constant, which depends only on the rank of the group \mathbb Znri{{\mathbb Z}_{n_r}^i}. Also, we shall give an application of Davenport’s constant to smooth numbers related to the Quadratic sieve.  相似文献   

13.
The undirected power graph G(S) of a semigroup S is an undirected graph whose vertex set is S and two vertices a,bS are adjacent if and only if ab and a m =b or b m =a for some positive integer m. In this paper we characterize the class of semigroups S for which G(S) is connected or complete. As a consequence we prove that G(G) is connected for any finite group G and G(G) is complete if and only if G is a cyclic group of order 1 or p m . Particular attention is given to the multiplicative semigroup ℤ n and its subgroup U n , where G(U n ) is a major component of G(ℤ n ). It is proved that G(U n ) is complete if and only if n=1,2,4,p or 2p, where p is a Fermat prime. In general, we compute the number of edges of G(G) for a finite group G and apply this result to determine the values of n for which G(U n ) is planar. Finally we show that for any cyclic group of order greater than or equal to 3, G(G) is Hamiltonian and list some values of n for which G(U n ) has no Hamiltonian cycle.  相似文献   

14.
It will be shown that if G is a graph of order n which contains a triangle, a cycle of length n or n−1 and at least cn odd cycles of different lengths for some positive constant c, then there exists some positive constant k=k(c) such that G contains at least kn 1/6 even cycles of different lengths. Other results on the number of even cycle lengths which appear in graphs with many different odd length cycles will be given. Received: October 15, 1997  相似文献   

15.
We consider an infinite tandem queueing network consisting of ·/GI/1/∞ stations with i.i.d. service times. We investigate the asymptotic behavior of t(n, k), the inter-arrival times between customers n and n + 1 at station k, and that of w(n, k), the waiting time of customer n at station k. We establish a duality property by which w(n, k) and the “idle times”y(n, k) play symmetrical roles. This duality structure, interesting by itself, is also instrumental in proving some of the ergodic results. We consider two versions of the model: the quadrant and the half-plane. In the quadrant version, the sequences of boundary conditions {w(0,k), k∈ℕ} and {t(n, 0), n∈ℕ}, are given. In the half-plane version, the sequence {t(n, 0), n∈ℕ} is given. Under appropriate assumptions on the boundary conditions and on the services, we obtain ergodic results for both versions of the model. For the quadrant version, we prove the existence of temporally ergodic evolutions and of spatially ergodic ones. Furthermore, the process {t(n, k), n∈ℕ} converges weakly with k to a limiting distribution, which is invariant for the queueing operator. In the more difficult half plane problem, the aim is to obtain evolutions which are both temporally and spatially ergodic. We prove that 1/n k=1 n w(0, k) converges almost surely and in L 1 to a finite constant. This constitutes a first step in trying to prove that {t(n,k), n∈ℤ} converges weakly with k to an invariant limiting distribution. Received: 23 March 1999 / Revised version: 5 January 2000 / Published online: 12 October 2000  相似文献   

16.
Let G be a finite nonabelian group, ℤG its associated integral group ring, and Δ(G) its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups Q n (G) = Δ n (G)/Δ n+1(G) is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.  相似文献   

17.
We discuss the range of values for the integrity of a graphs G(n, k) where G(n, k) denotes a simple graph with n vertices and k edges. Let I max(n, k) and I min(n, k) be the maximal and minimal value for the integrity of all possible G(n, k) graphs and let the difference be D(n, k) = I max(n, k) − I min(n, k). In this paper we give some exact values and several lower bounds of D(n, k) for various values of n and k. For some special values of n and for s < n 1/4 we construct examples of graphs G n  = G n (n, n + s) with a maximal integrity of I(G n ) = I(C n ) + s where C n is the cycle with n vertices. We show that for k = n 2/6 the value of D(n, n 2/6) is at least \frac?6-13n{\frac{\sqrt{6}-1}{3}n} for large n.  相似文献   

18.
We define a notion of complexity for modules over group rings of infinite groups. This generalizes the notion of complexity for modules over group algebras of finite groups. We show that if M is a module over the group ring kG, where k is any ring and G is any group, and M has f-complexity (where f is some complexity function) over some set of finite index subgroups of G, then M has f-complexity over G (up to a direct summand). This generalizes the Alperin-Evens Theorem, which states that if the group G is finite then the complexity of M over G is the maximal complexity of M over an elementary abelian subgroup of G. We also show how we can use this generalization in order to construct projective resolutions for the integral special linear groups, SL(n, ℤ), where n ≥ 2.  相似文献   

19.
 In this paper we study three-color Ramsey numbers. Let K i,j denote a complete i by j bipartite graph. We shall show that (i) for any connected graphs G 1, G 2 and G 3, if r(G 1, G 2)≥s(G 3), then r(G 1, G 2, G 3)≥(r(G 1, G 2)−1)(χ(G 3)−1)+s(G 3), where s(G 3) is the chromatic surplus of G 3; (ii) (k+m−2)(n−1)+1≤r(K 1,k , K 1,m , K n )≤ (k+m−1)(n−1)+1, and if k or m is odd, the second inequality becomes an equality; (iii) for any fixed mk≥2, there is a constant c such that r(K k,m , K k,m , K n )≤c(n/logn), and r(C 2m , C 2m , K n )≤c(n/logn) m/(m−1) for sufficiently large n. Received: July 25, 2000 Final version received: July 30, 2002 RID="*" ID="*" Partially supported by RGC, Hong Kong; FRG, Hong Kong Baptist University; and by NSFC, the scientific foundations of education ministry of China, and the foundations of Jiangsu Province Acknowledgments. The authors are grateful to the referee for his valuable comments. AMS 2000 MSC: 05C55  相似文献   

20.
 For an ordered k-decomposition ? = {G 1, G 2,…,G k } of a connected graph G and an edge e of G, the ?-representation of e is the k-tuple r(e|?) = (d(e, G 1), d(e, G 2),…,d(e, G k )), where d(e, G i ) is the distance from e to G i . A decomposition ? is resolving if every two distinct edges of G have distinct representations. The minimum k for which G has a resolving k-decomposition is its decomposition dimension dec(G). It is shown that for every two positive integers k and n≥ 2, there exists a tree T of order n with dec(T) = k. It is also shown that dec(G) ≤n for every graph G of order n≥ 3 and that dec(K n ) ≤⌊(2n + 5)/3⌋ for n≥ 3. Received: June 17, 1998 Final version received: August 10, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号