首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent indium-tin-oxide (ITO) anode surface was modified using O3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N,N′-Diphenyl-N,N′-bis(3-methylphenyl)-1,1′-diphenyl-4,4′-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.  相似文献   

2.
The electroluminescence (EL) intensity has been investigated of green and blue (In,Ga)N multiple‐quantum‐well diodes grown on c ‐plane sapphire over a wide temperature range and as a function of current between 0.01 mA and 10 mA. The EL intensity of the green diode with p‐(Al,Ga)N electron blocking layer does not show low‐temperature quenching, especially at low injection levels, previously observed for the blue (In,Ga)N quantum‐well diodes. This finding rules out possi‐ bilities that the freeze‐out of holes at deep Mg acceptor levels and the failure of hole injections through the p‐(Al,Ga)N layer are directly responsible for the EL quenching at temperatures below 100 K. Variations of the EL efficiency with current level suggest that capture/escape efficiencies of injected carriers by the wells play an important role for the determination of EL external quantum efficiency. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
以磷光染料Ir(piq)2(acac)作为发光掺杂剂,掺入空穴传输性主体材料NPB中得到红色发光层,荧光材料TBP掺入到主体CBP中作为蓝色发光层,制备了结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP/CBP:TBPe/BCP/ALq/Mg:Ag的双发光层白色有机电致发光器件.其中ALq3、未掺杂的NPB和CBP及BCP层分别作为电子传输层、空穴传输层和激子阻挡层.实验中通过调节发光层厚度及Ir(piq)2关键词: 磷光 激子阻挡层 有机电致发光  相似文献   

4.
Gold nanoparticles (GNPs) on the performance of the phosphorescent organic light-emitting devices (OLEDs) were investigated. The green phosphorescent OLEDs with GNPs incorporated in hole transporting layer (HTL) or hole blocking layer (HBL) were fabricated using thermal evaporation technique. The results indicated that the performance of the OLEDs with GNPs were dependent on the position of the GNPs. The optimized device with GNPs in HBL shows enhanced current efficiency and reduced efficiency roll-off. However, the efficiency of the device with GNPs in HTL was decreased. The detailed physical mechanism is investigated in order to unveil such difference.  相似文献   

5.
Al/Ni bilayer cathode was used to improve the electroluminescent (EL) efficiency and stability in N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′ biphenyl 4,4′-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)-based organic light-emitting diodes. The device with LiF/Al/Ni cathode achieved a maximum power efficiency of 2.8 lm/W at current density of 1.2 mA/cm2, which is 1.4 times the efficiency of device with the state-of-the-art LiF/Al cathode. Importantly, the device stability was significantly enhanced due to the utilization of LiF/Al/Ni cathode. The lifetime at 30% decay in luminance for LiF/Al/Ni cathode was extrapolated to 400 h at an initial luminance of 100 cd/m2, which is 10 times better than the LiF/Al cathode.  相似文献   

6.
通过在OLED器件的空穴传输层中掺杂不同比例的SrF2制作出了高效率蓝色磷光OLED器件.这种器件能有效提高蓝色磷光OLED器件的空穴注入与传输特性,降低器件的的工作电压,提高流明效率(19.11m/W)、电流效率(26.9 cd/A)以及亮度(22 220 cd/m2),和未经掺杂的参比器件相比,分别提高了85.4%...  相似文献   

7.
以MADN为空穴传输层,主-客掺杂体系[Alq3∶0.7 Wt%rubrene]为发光兼电子传输层,构建了双层结构的高效率黄绿光OLED器件。该器件的黄绿光由主发光体Alq3通过不完全能量转移到客发光体rubrene实现,电致发光峰值位于560 nm,1931CIE色坐标为(0.46, 0.52),最大发光效率达到了7.63 cd·A-1,比相应的NPB做空穴传输层的双层结构器件提高了30%。通过构建以MADN或NPB为空穴传输层的空穴单载流子器件并进行阻抗谱分析,结果表明MADN可以作为一种非常有效的空穴传输层,其空穴迁移性略低于NPB,这恰好弥补了OLED器件中空穴迁移比电子迁移快这一缺陷,为改善OLED发光层中载流子的平衡性创造了条件,从而提高了器件的发光效率。此外,MADN做空穴传输层的双层结构OLED的发光效率与传统三层结构器件(MADN和Alq3分别作为空穴传输层和电子传输层)基本相当,表明了这种双层结构器件在简化器件结构的同时并不以牺牲发光效率为代价,发光层[Alq3∶0.7 Wt%rubrene]兼具有优良的电子传输性能。  相似文献   

8.
A numerical model for bilayer organic light-emitting diodes (OLEDs) has been developed on the basis of trappedcharge limited conduction. The dependences of the current density on the operation voltage, the thickness andtrap properties of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure an-ode/HTL/EML/cathode have been numerically investigated. It has been found that, for given values of reduced trapdepth, total trap density, and carrier mobility of HTL and EML, there exists an optimum thickness ratio of HTL tothe sum of HTL and EML, by which a maximal current density, and hence maximal quantum efficiency and luminance,can be achieved. The current density decreases quickly with the mean trap density, and decreases nearly exponentiallywith the mean reduced trap depth.  相似文献   

9.
High-performance undoped white organic light-emitting diode (OLED) has been fabricated using an ultrathin yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (rubrene) inserted at two sides of interface between two N,N′-bis-(1-naphthyl)-N,N′- biphenyl-1,1′-biphenyl-4,4′- diamine (NPB) layers as a hole transporting and blue emissive layer, respectively. The results showed that a maximum luminance of the device reached to as high as 21,500 cd/m2 at 15 V. The power efficiencies of 2.5 and 1.6 lm/W at a luminance of 1000 and 10000 cd/m2, respectively, were obtained. The peaks of electroluminescent (EL) spectra locate at 429 and 560 nm corresponding to the Commissions Internationale De L’Eclairage (CIE) coordinates of (0.32, 0.33), which is independent of bias voltage. The performance enhancement of the device may result from direct charge carrier trapping in rubrene. Energy transfer mechanism was also found in the EL process.  相似文献   

10.
Tris(8-hydroxyquinolato) aluminum (Alq3)-based organic light-emitting diodes were fabricated with or without using a hole transport layer (HTL). As a conventional device, the ITO/Alq3/Mg-Ag device yielded a green-light emission with a single peak at 525 nm in the electroluminescence (EL) spectrum. In contrast, two sub-peaks were observed in the EL spectrum of some ITO/HTL/Alq3/Mg-Ag devices. This difference was tentatively explained by comparing EL with the photoluminescence (PL) spectrum reported in the literature.  相似文献   

11.
The electroluminescent characteristics of blue organic light-emitting diodes(BOLEDs) fabricated with doped charge carrier transport layers are analyzed. The fluorescent blue dopant BCzVBi is doped in an emissive layer,hole transport layer(HTL) and electron transport layer(ETL), respectively, to optimize the probability of exciton generation in the BOLEDs. The luminance and luminous efficiency of BOLEDs made with BCzVBi-doped HTL and ETL increase by 22% and 17% from 11,683 cd/m2 at 8.5 V and 6.08 cd/A at 4.0 V to 14, 264 cd/m2 at8.5 V and 7.13 cd/A at 4.0 V while CIE coordinates of(0.15, 0.15) of both types of BOLEDs remained unchanged. The electron mobility of BCzVBi is estimated to be 1.02 x 10_o cm2/Vs by TOF.  相似文献   

12.
The effects of different hole injection materials as the buffer layer on the electro-luminescence (EL) performances of white organic light-emitting diodes (WOLEDs) are investigated in detail. It is found that the EL performances and electric properties were strongly dependent on the structure of the used hole injection materials with different thicknesses, which directly affected the injection and transport properties in devices, and thus the EL efficiency and lifetime. It can be seen that a hybrid buffer layer of 5 nm aluminum fluoride (AlF3)/15 nm 4,4′,4″-tris(3-methylphenylphenylamino) (m-MTDATA) as the hole injection buffer layer shows the best EL performances in efficiency and lifetime, showing a promising hole injection material in WOLEDs. The mechanisms behind the enhanced performance of the hybrid buffer layer in WOLEDs are discussed based on X-ray photoelectron spectroscopy (XPS) measurement.  相似文献   

13.
LB膜的电致发光及其器件   总被引:4,自引:0,他引:4       下载免费PDF全文
欧阳健明 《发光学报》2000,21(4):363-368
Langmuir-Blodgett(LB)膜具有超薄、均匀、取向和厚度可控及在分子水平上可任意组装等特点,以LB膜为发光层所制备的电致发光(EL)器件,发光层的组成和厚度精确可控,制备条件温和,给发光层的制备开辟了一条新途径。论述用作EL器件的发光层、电子传输材料(ETL)和空穴传输层(HTL)的LB膜材料。并以8-羟基喹啉的两亲配合物LB膜为重点,介绍了LB膜的层数、沉积压等制膜参数对EL器件性能的影响,讨论了IB膜EL器件的发光机理,最后,对IB膜EL器件存在的问题及今后的发展前景进行了评述。  相似文献   

14.
陈苏杰  于军胜  文雯  蒋亚东 《物理学报》2011,60(3):37202-037202
采用N, N'-diphenyl-N, N'-bis(1-naphthyl-pheny1)-1, 1'-biphenyl-4, 4'-diamine (NPB):4, 4'-N, N'-dicarbazole-biphenyl (CBP) 掺杂体系为复合空穴传输层,制备了结构为indium-tin oxide (ITO)/NPB:CBP/CBP:bis iridium (acetylacetonate) /2, 9-dimethyl-4, 7-diphenyl-p 关键词: 有机电致发光器件(OLEDs) 复合空穴传输层 NPB:CBP 器件性能  相似文献   

15.
Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved.  相似文献   

16.
We demonstrate a high eftlciency top-emitting polymer light-emitting diode (TPLED) with chromium (Cr) taking as the anode. The TPLED structure is Cr/poly-3, 4-ethylenedioxythiophene (PEDOT:PSS)/poly [2-(4-3',7'- dimethyloctyloxy)-phenyl]-p-phenylenevinylene) (P-PP V) /Ba/Ag. The Cr ( 100 nm) anode is prepared by sputterdepositing in a vacuum chamber. It is found that the device emissive properties are affected dramatically by the thickness of both PEDOT:PSS and the Ag cathode. Optimized thicknesses of PEDOT:PSS and Ag layer are 60nm and 15nm, respectively. The diode exhibits excellent electroluminescence (EL) properties, such as a turn-on voltage of 3.32 V, luminous eftlciency of 4.41 cd/A and luminance of 6989cd/m^2 at driving voltage of about 9 V.  相似文献   

17.
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′ biphenyl 4,4′-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency.  相似文献   

18.
姜燕  杨盛谊  张秀龙  滕枫  徐征  侯延冰 《物理学报》2006,55(9):4860-4864
以电子束蒸发的方法制备硒化锌(ZnSe)薄膜,研究了基于ZnSe的有机-无机异质结电致发光器件.在双层器件ITO/ZnSe(50nm)/Alq3(12nm)/Al中看到了峰值位于578nm的ZnSe电致发光,却很难得到单层器件ITO/ZnSe(50—120nm)/Al的电致发光;在此基础上进一步引入有机空穴传输层(HTL),通过改变器件的结构,讨论了ZnSe对有机-无机异质结器件ITO/HTL/ZnSe/Alq3/Al电致发光特性的影响.其电致发光光谱的研究结果证实了ZnSe在器件中的作用:ZnSe既起传输电子的作用,也起到传输空穴的作用,还作为发光层.并对ZnSe的发光机理进行了讨论. 关键词: 硒化锌 有机-无机异质结 电致发光 空穴传输层  相似文献   

19.
When a voltage pulse is applied under forward biased condition to a spin-coated bilayer organic light-emitting diode (OLED), then initially the electroluminescence (EL) intensity appearing after a delay time, increases with time and later on it attains a saturation value. At the end of the voltage pulse, the EL intensity decreases with time, attains a minimum intensity and then it again increases with time, attains a peak value and later on it decreases with time. For the OLEDs, in which the lifetime of trapped carriers is less than the decay time of the EL occurring prior to the onset of overshoot, the EL overshoot begins just after the end of voltage pulse. The overshoot in spin-coated bilayer OLEDs is caused by the presence of an interfacial layer of finite thickness between hole and electron transporting layers in which both transport molecules coexist, whereby the interfacial energy barrier impedes both hole and electron passage. When a voltage pulse is applied to a bilayer OLED, positive and negative space charges are established at the opposite faces of the interfacial layer. Subsequently, the charge recombination occurs with the incoming flux of injected carriers of opposite polarity. When the voltage is turned off, the interfacial charges recombine under the action of their mutual electric field. Thus, after switching off the external voltage the electrons stored in the interface next to the anode cell compartment experience an electric field directed from cathode to anode, and therefore, the electrons move towards the cathode, that is, towards the positive space charge, whereby electron–hole recombination gives rise to luminescence. The EL prior to onset of overshoot is caused by the movement of electrons in the electron transporting states, however, the EL in the overshoot region is caused by the movement of detrapped electrons. On the basis of the rate equations for the detrapping and recombination of charge carriers accumulated at the interface expressions are derived for the transient EL intensity I, time tm and intensity Im corresponding to the peak of EL overshoot, total EL intensity It and decay of the intensity of EL overshoot. In fact, the decay prior to the onset of EL overshoot is the decay of number of electrons moving in the electron transporting states. The ratio Im/Is decreases with increasing value of the applied pulse voltage because Im increases linearly with the amplitude of applied voltage pulse and Is increases nonlinearly and rapidly with the increasing amplitude of applied voltage pulse. The lifetime τt of electrons at the interface decreases with increasing temperature whereby the dependence of τt on temperature follows Arrhenius plot. This fact indicates that the detrapping involves thermally-assisted tunneling of electrons. Using the EL overshoot in bilayer OLEDs, the lifetime of the charge carriers at the interface, recombination time of charge carriers, decay time of the EL prior to onset of overshoot, and the time delay between the voltage pulse and onset time of the EL overshoot can be determined. The intense EL overshoot of nanosecond or shorter time duration may be useful in digital communication, and moreover, the EL overshoot gives important information about the processes involving injection, transport and recombination of charge carriers. The criteria for appearance of EL overshoot in bilayer OLEDs are explored. A good agreement is found between the theoretical and experimental results.  相似文献   

20.
有机薄膜电致发光器件结构与发光特性的研究   总被引:4,自引:0,他引:4  
李方红  刘旭 《光学学报》1998,18(2):17-222
从有机电致发光薄膜的发光机理出发,通过以Alq薄膜器件、PVK为空穴传输层和Alq为发光层的双层 及PVK掺荧光材料Perylene的双层薄膜器件的研制,从器件的电致姚谱、电流密度-电压特性、亮度-电压特性的曲线的测试结果,计算分析了器件的流明效率、量子效率,并对有机薄膜电致发光器件的结构与发光特性之间的关系进行研究,利用能级理论分析了器件的姚特性随器件的结构不同所具有的规律。实验表明,加入PVK  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号