首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.  相似文献   

2.
The self-organized growth of germanium quantum dots on square nanopatterned Si(0 0 1) substrates is investigated by scanning tunnelling microscopy (STM) and grazing incidence X-ray diffraction (GIXRD) techniques. A regular surface patterning in the 10-100 nm period range is obtained by etching an interface dislocation network obtained by the controlled molecular bonding of Si substrates. The depth of the silicon surface profile is increased by a double etching process. Growth experiments are performed by solid source molecular beam epitaxy (MBE), and for deep trenches, germanium growth conditions are optimized to obtain one Ge dot per Si mesa. It is shown that the trench depth and the mesa profile strongly affect the dot size and its coincidence with the initial regular surface network. Anomalous GIXRD measurements are performed to highlight the Ge elastic relaxation and intermixing during heteroepitaxial growth. We report a significant modification in the stress state of Ge dots as a function of thermal annealing after growth.  相似文献   

3.
We report the study of infrared spectroscopy of intraband transitions in Ge/Si quantum dot superlattices. The superlattices, which were grown on (001) oriented Si substrates by a solid source molecular beam epitaxy system, are composed mainly of 20 or 30 periods of Ge dot layers and Si spacer films. The structural properties of them and of the uncapped Ge dots grown on the surfaces of some of them were tested by cross-sectional transmission electron and atomic force microscopes, respectively. It is found that the Ge quantum dots have flat lens-like shapes. Infrared absorption signals peaking in the mid-infrared range were observed using Fourier transform infrared and Raman scattering spectroscopy techniques. Experimental and theoretical analysis suggests that the mid-infrared response be attributed to intraband transitions within the valence band of the Ge quantum dots in the superlattices. The fact that the intraband absorption is strongly polarized along the growth axis of the superlattices signifies that the Ge quantum dots with flat lens-like shapes perform as Ge/Si-based quantum wells. This study demonstrates the application potential of these kinds of Ge/Si quantum dot superlattices for developing mid-infrared photodetectors.  相似文献   

4.
The effect of vertical ordering in superlattices of self-assembled Ge/Si(0 0 1) quantum dots was investigated by a combination of structural and optical characterizations via in situ reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy and photoluminescence spectroscopy. We show that the vertical ordering observed in quantum-dot superlattices is characterized not only by the alignment of islands along the growth direction but also by a reduction of the critical thickness. The better the vertical ordering is, the more pronounced the reduction of the critical thickness will be. Such an evolution of the critical thickness could be explained by elastic strain fields induced by buried islands and propagated through the spacer layers. An important result issued from this work is the realization of superlattices in which dots can have equal size in all layers. On the other hand, experiments performed on the transformation of the island shape versus the spacer layer thickness suggest that preferential nucleation induced by surface roughness may be the main mechanism responsible for the vertical ordering observed in quantum-dot superlattices.  相似文献   

5.
Germanium quantum dots formed on Si (1 1 1) and (1 0 0)-oriented surfaces coated with ultra-thin oxide layers are studied using Raman spectroscopy technique. Some structural properties (height, stoichiometry and mechanical stresses) of the dots were estimated from Raman data. For analysis of the experimental data, the Raman spectra of Ge nanoclusters containing some hundreds of Ge atoms were calculated numerically. The effects of the resonance enhancement of the intensity of Raman scattering in the Ge-nanoclusters–SiO2–Si system were discussed. The influence of the lateral sizes of Ge nano-clusters on the frequencies of phonons localized in them was studied using numerical simulation. The influence of multi-layer growth on the structure of the Ge quantum dots was investigated.  相似文献   

6.
We study the effect of quantum dot size on the mid-infrared photocurrent, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage during molecular beam epitaxy of Ge/Si(001) system in the Stranski–Krastanov growth mode while keeping the deposition temperature to be the same. A device with smaller dots is found to exhibit a lower capture probability and a higher photoconductive gain and photoresponse. The integrated responsivity in the mid-wave atmospheric window (λ = (3–5) μm) is improved by a factor of about 8 when the average in-plane dot dimension changes from 18 to 11 nm. The decrease in the dot size is expected to reduce the carrier relaxation rate due to phonon bottleneck by providing strong zero-dimensional quantum mechanical confinement.  相似文献   

7.
Surface structure, determined by scanning tunneling microscopy (STM), surface morphology, determined by atomic force microscopy (AFM), and surface composition, determined by X-ray photoelectron spectroscopy (XPS) of 20.0 nm Si0.8Ge0.2 quantum dots formed at 800 °C and encapsulated with 0-10 nm of Si at 500 °C and 800 °C are presented. It is observed that the quantum dot surface morphology changes during the Si encapsulation at 800 °C by the smoothing of the quantum dots. The height of the quantum dots decreases faster than can be accounted for from the amount of Si deposited, indicating that there is movement of material out of the quantum dots during the encapsulation process. Encapsulation at 500 °C results in a retention of the quantum dot surface morphology with increased Ge segregation compared to Si encapsulation at 800 °C. We conclude that the changing surface morphology at 800 °C is not the result of Ge segregation but due to intermixing resulting from the tensile strain of Si depositing on SiGe.  相似文献   

8.
Templated self-organization has been used to prepare two-dimensional arrays as well as three-dimensional quantum dot crystals (QDC) containing Ge dots in a Si host crystal. Si(1 0 0) substrates have been patterned with two-dimensional hole gratings using extreme ultra-violet interference lithography (EUV-IL) and reactive ion etching. The EUV-IL was realized by multiple beam diffraction using Cr gratings on SiNx membranes fabricated by e-beam lithography. Si/Ge overgrowth was performed by molecular beam epitaxy. The impact of the microscopic shape and size of the prepattern using the mask design and the EUV-IL exposure dose as parameters on the Ge dot nucleation has been studied with atomic force microscopy, transmission electron microscopy and photoluminescence measurements. Adjusting the growth parameters in multiple layer deposition the initial two-dimensional configuration was transferred into three-dimensional QDC.  相似文献   

9.
Lateral photoconductivity spectra of multilayer Ge/Si heterostructures with Ge quantum dots were studied in the work proposed at room temperature. The photocurrent with minimal energy 0.48-0.56 eV that is smaller than Ge band gap was observed from such structures at the geometry of waveguide excitation. Generation of the photocurrent with the limit energy 0.48-0.56 eV was explained by spatially indirect electron transitions from heavy hole states of SiGe valence band into Δ2-valley of the conduction band of Si surrounding. It was found out that the limit energy of such transitions decreased, as the number of SiGe quantum dot layers increased.  相似文献   

10.
In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (t Si) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter t Si, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.  相似文献   

11.
C2H4 mediations were used to modify the Stranski-Krastanow growth mode of Ge dots on Si(0 0 1) at 550 °C by ultra-high vacuum chemical vapor deposition. With appropriate C2H4-mediation to modify the Si surface, the elongated Ge hut clusters can be transformed to highly uniform Ge domes with a high Ge composition at the core. These C2H4-mediated Ge dots, almost bounded by {1 1 3} facets, have an average diameter and height of 55 and 9 nm, respectively. We propose two major mechanisms to depict the formation of these C2H4-mediated Ge dots: (i) an almost hydrogen-passivated Si surface to limit the nucleation sites for dot formation, and (ii) the incorporation of Ge atoms, repelled by the C-rich areas, into the existing Ge dots. This work provides a useful scheme to tune the topography of Ge dots in an UHV/CVD condition for possible optoelectronic applications.  相似文献   

12.
We studied the growing process of Ge dots on silicon substrates covered with an ultrathin silicon dioxide buffer layer which was formed with simple chemical procedure. Uniform and densely packed (1011 cm−2) quantum dots (QDs) were obtained by optimizing the growth parameter with the MBE method. The influence of temperature, coverage, as well as the post-annealing process, on the epitaxial and non-epitaxial nanodots formation was evaluated. Nano-sized high density quantum dots were also realized with different growing conditions, whose structural and growing mechanism were discussed under the help of SEM and RHEED results.  相似文献   

13.
离子束溅射自组装Ge/Si量子点生长的演变   总被引:2,自引:0,他引:2       下载免费PDF全文
张学贵  王茺  鲁植全  杨杰  李亮  杨宇 《物理学报》2011,60(9):96101-096101
采用离子束溅射技术,通过改变Ge的沉积量,在n型Si(100)衬底上自组装生长了一系列Ge量子点样品. 利用AFM和Raman光谱对样品表面形貌和结构进行表征,系统地研究了Ge量子点形貌、密度、尺寸大小以及Ge的结晶性和量子点中组分等随Ge沉积量的演变规律. 结果表明:Ge层从二维薄层向三维岛过渡过程中,没有观察到传统的由金字塔形向圆顶形量子点过渡,而是直接呈圆顶形生长;且随着Ge沉积量的增加,量子点密度先增大后减小,Ge的结晶性增强同时Ge/Si互混加剧,量子点中Si的组分增加. 关键词: 离子束溅射 量子点 表面形貌 Raman光谱  相似文献   

14.
埋置量子点应力分布的有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过衬底材料和外延材料的交替生长方式制备出多层排列的自组装量子点超晶格结构.这些埋置量子点的应力/应变场影响着它们的光电性能、压电性能以及力学稳定性.基于各向异性弹性理论的有限元方法,研究了埋置金字塔形应变自组织Ge/Si半导体量子点的应力/应变分布以及流体静应变和双轴应变分布,并与非埋置量子点的应力/应变分布做了比较,指出了它们之间的异同以及覆盖层对量子点应力/应变分布的影响. 关键词: 量子点 应力分布 应变分布  相似文献   

15.
Self-assembled GeSiC dots stacked on a Ge hut-cluster layer buried in Si have been investigated. The critical thickness for formation of GeSiC dots is reduced owing to the strain fields from the buried hut-clusters. By utilizing the stacked structure, the dot size is decreased and the uniformity is improved. The highest density of the GeSiC dots with stacked structures is 7.4×1010 cm−2, which is six times larger than that of single GeSiC dots. The formation of the self-assembled GeSiC dots is strongly influenced by being stacked with buried Ge dots as well as C incorporation.  相似文献   

16.
A nonmonotonic dependence of the lateral photoconductivity (PC) on the interband light intensity is observed in Si/Ge/Si and Si/Ge/SiOx structures with self-organized germanium quantum dots (QDs): in addition to a stepped increase in PC, a stepped decrease in PC is also observed. The effect of temperature and drive field on these features of the PC for both types of structures with a maximum nominal thickness of the Ge layer (NGe) is studied. The results obtained are discussed in the context of percolation theory for nonequilibrium carriers localized in different regions of the structure: electrons in the silicon matrix and holes in QDs.  相似文献   

17.
The conductance along an island layer of Ge quantum dots buried in silicon was investigated. The sizes of the islands varied in the range D ≈ 12−19 nm. It was found that the charge transport is characterized by two activation energies. The first one is associated with the thermal emission of holes from Ge quantum wells into the valence band of Si. The second one is due to the tunneling of holes between islands under Coulomb blockade conditions and is determined by the electrostatic charging energy of a quantum dot. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 6, 423–426 (25 March 1996)  相似文献   

18.
In this contribution we study the intravalence band photoexcitation of holes from self-assembled Ge quantum dots (QDs) in Si followed by spatial carrier transfer into SiGe quantum well (QW) channels located close to the Ge dot layers. The structures show maximum response in the important wavelength range 3–5 μm. The influence of the SiGe hole channel on photo- and dark current is studied depending on temperature and the spatial separation of QWs and dot layers. Introduction of the SiGe channel in the active region of the structure increases the photoresponsivity by up to about two orders of magnitude to values of 90 mA/W at T=20 K. The highest response values are obtained for structures with small layer separation (10 nm) that enable efficient transfer of photoexcited holes from QD to QW layers. The results indicate that Si/Ge QD structures with lateral photodetection promise very sensitive large area mid-infrared photodetectors with integrated readout microelectronics in Si technology.  相似文献   

19.
The structure of thin Al films grown on Si(1 1 1) with thin Cu buffer layers has been investigated using synchrotron radiation photoemission spectroscopy. A thin Cu(1 1 1) layer between the Si(1 1 1) substrate and an Al film may enhance quantum well effects in the Al film significantly. The strength of quantum well effects has been investigated qualitatively with respect to the thickness of the Cu buffer layer and to the Al film thickness. Deposition of Cu on Si(1 1 1)7 × 7 leads to formation of a disordered silicide layer in an initial regime before a well-ordered Cu(1 1 1) film is formed after deposition of the equivalent of 6 layers of Cu. In the regime below 6 layers of Cu the disorder is transferred to Al layers subsequently grown on top. The initial growth of up to 8 layers of Al on a well-ordered Si/Cu(1 1 1) layer leads to a disordered film due to the lattice mismatch between the two metals. When the Cu buffer layer and the Al over-layer are above 6 and 8 layers, respectively the Al film shows sharp low energy electron diffraction patterns and very sharp quantum well peaks in the valence band spectra signalling good epitaxial growth.  相似文献   

20.
小尺寸Si/Ge量子点内应变和组分的拉曼光谱表征   总被引:1,自引:1,他引:0  
本文详细地研究了原始生长和退火处理后的Si/Ge量子点的拉曼光谱。我们观测到了Si/Ge量子点的一系列本征的拉曼振动模以及Ge-Ge模的LO和TO声子峰间4.2cm-1的频率劈裂。通过这些参数,我们自洽地确定了原始生长的平面直径为20nm和高为2nm的Si/Ge量子点内Ge的平均组分为80%,平均应变为-3.4%。分析清楚地表明了这种小尺寸的Si/Ge量子点内的应变仍遵从双轴应变,并且应变的释放主要由量子点和Si隔离层间Si-Ge原子互扩散决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号