首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography – diode array detector – mass spectroscopy (UPLC–DAD–MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm?2, temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene.  相似文献   

2.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

3.
In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only “in situ” water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm2 and 59.83 °C giving a polyphenol yield of 50.02 mg GA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled “in situ” water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water.  相似文献   

4.
The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30 min. The optimum operating conditions were found to be: extraction temperature, 51.5 °C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters.  相似文献   

5.
In this study the potential use of an aqueous two phase system (ATPS) coupled with ultrasound for the extraction of lignans from Schisandra chinensis seeds was evaluated and optimized using response surface methodology (RSM). The main bioactive components, schizandrin (SA), schisantherin A (SAA) and deoxyschizandrin (DSA) were selected as markers. The partitioning behavior of lignans in different salt-types of ATPS was compared. The optimization ATPS of 25% (w/w) (NH4)2SO4 and 19% (w/w) ethanol were selected based on their higher upper phase partitioning coefficient (>74) and the recovery (>93%) for three markers. Using the optimized ATPS solvent, the RMS results showed 20:1 of solvent:solid, 800 W and 61.1 min were the optimal ultrasound assisted extraction conditions, under which 13.10 mg/g SA, 1.87 mg/g SAA and 1.84 mg/g DSA were recovered in the upper phase, whereas the wasted stigmas accumulated in the lower phase. Compared with 80% ethanol (v/v) ultrasonic extraction, similar yields were obtained, but the present method exhibited higher extraction purity for the selective extraction of lignans from S. chinensis seeds.  相似文献   

6.
This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent.  相似文献   

7.
Ethyl esters of babassu oil were synthesized by alkaline catalysis to make the green production of biodiesel feasible with simple methods and available technology. Babassu oil is a transparent, light yellow oil extracted from the seeds of the babassu palm (Orbinya sp), and due to its high saturated fatty acid composition (83%), it is considered a non-inedible oil. Transesterification using ethanol represents a valid alternative to using methanol because of ethanol’s lower toxicity and the higher yield on weight compared to methanol. Statistical methodology was applied to optimize the transesterification reaction, which was promoted by ultrasonic waves and mechanical agitation. Nuclear magnetic resonance spectroscopy was used to quantify the conversion attained. Alkaline transesterification assisted by ultrasound produced the best results with respect to reaction time and the phase separation step. The model obtained showed that conversions higher than 97% may be achieved in 10 min with correct tuning of the process variables.  相似文献   

8.
The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercritical fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE.  相似文献   

9.
This study proposes an ultrasound-horn system for the extraction of a natural active compound “artemisinin” from Artemisia annua L. leaves as an alternative to hot maceration technique. Ultrasound leaching improves artemisinin recovery at all temperatures where only ten minutes is required to recover 70% (4.42 mg g−1) compared to 60 min of conventional hot leaching for the same yield. For instance, ultrasound treatment at 30 °C produced a higher yield than the one obtained by conventional maceration at 40 °C. Kinetic study suggests that the extraction pattern can be assimilated, during the first ten minutes, to a first order steady state, from which activation energy calculations revealed that each gram of artemisinin required 7.38 kJ in ultrasound versus 10.3 kJ in the conventional system. Modeling results indicate the presence of two extraction stages, a faster stage with a diffusion coefficient of 19 × 10−5 cm2 min−1 for ultrasound technique at 40 °C, seven times higher than the conventional one; and a second deceleration stage similar for both techniques with diffusion coefficient ranging from 1.7 to 3.1 × 10−5 cm2 min−1. It is noted that the efficient ultrasound extraction potential implies extraction of higher amount of co-metabolites so low artemisinin crystal purity is engendered but a combination with a purification step using activated charcoal and celite adsorbents produced crystals with comparable purity for conventional and ultrasound samples.  相似文献   

10.
Ultrasound-assisted extraction of rapeseed oil was investigated and compared with conventional extraction for energy efficiency, throughput time, extraction yield, cleanness, processing cost and product quality. A multivariate study enabled us to define optimal parameters (7.7 W/cm2 for ultrasonic power intensity, 40 °C for processing temperature, and a solid/liquid ratio of 1/15) for ultrasound-assisted extraction of oil from oilseeds to maximize lipid yield while reducing solvent consumption and extraction time using response surface methodology (RSM) with a three-variable central composite design (CCD). A significant difference in oil quality was noted under the conditions of the initial ultrasound extraction, which was later avoided using ultrasound in the absence of oxygen. Three concepts of multistage cross-current extraction were investigated and compared: conventional multistage maceration, ultrasound-assisted maceration and a combination, to assess the positive impact of using ultrasound on the seed oil extraction process. The study concludes that ultrasound-assisted extraction of oil is likely to reduce both economic and ecological impacts of the process in the fat and oil industry.  相似文献   

11.
An efficient cold-mechanical/sonic-assisted extraction technique was developed for extraction of genipin from genipap (Genipa americana) peel. Ultrasound assisted extraction (285 W, 24 kHz) was performed at 5, 10 and 15 °C for 5, 10 and 15 min. After cold-extraction, genipin was separated from pectin and proteins by aid of fungal pectinesterase. The maximum yield of non-cross-linked genipin was 7.85 ± 0.33 mg/g, at 10 °C for 15 min by means of ultrasound extraction. The protein amount in extracts decreased in all samples. If mechanical process is combined with ultrasound assisted extraction the yield is increased by 8 times after the pectinesterase-assisted polyelectrolyte complex formation between pectic polysaccharides and proteins, avoiding the typical cross-linking of genipin. This novel process is viable to obtain non-cross-linked genipin, to be used as a natural colorant and cross-linker in the food and biotechnological industries.  相似文献   

12.
In the present work, kinetics of synthesis of 1,3-bis(allyloxy)benzene was successfully carried out by O-allylation of resorcinol with allyl bromide using aqueous potassium hydroxide and catalyzed by a new multi-site phase-transfer catalyst viz., 1,3,5,7-tetrabenzylhexamethylenetetraammonium tetrachloride, MPTC under ultrasonic (40 kHz, 300 W) assisted organic solvent condition. The pseudo first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction rate can be greatly enhanced to seven fold faster with ultrasound irradiation than without ultrasound. The present study provides a method to synthesize ethers by ultrasound assisted liquid–liquid phase-transfer catalysis condition.  相似文献   

13.
14.
In this paper, extraction of resinoid from the aerial parts of white lady’s bedstraw (Galium mollugo L.) using an aqueous ethanol solution (50% by volume) was studied at different temperatures in the absence and the presence of ultrasound. This study indicated that ultrasound-assisted extraction was effective for extracting the resinoid and gave better resinoid yields at lower extraction temperature and in much shorter time than the maceration. A phenomenological model was developed for modeling the kinetics of the extraction process. The model successfully describes the two-step extraction consisting of washing followed by diffusion of extractable substances and shows that ultrasound influences only the first step. The extraction process was optimized using response surface methodology (RMS) and artificial neural network (ANN) models. For the former modeling, the second-order polynomial equation was applied, while the second one was performed by an ANN-GA combination. The high coefficient of determination and the low MRPD between the ANN prediction and the corresponding experimental data proved that modeling the extraction process in the absence and the presence of ultrasound using ANN was more accurate than RSM modeling. The optimum extraction temperature was determined to be 80 and 40 °C, respectively for the maceration and the ultrasound-assisted extraction, ensuring the highest resinoid yield of 22.0 g/100 g in 4 h and 25.1 g/100 g in 30 min, which agreed with the yields obtained experimentally for the same time (21.7 and 25.3 g/100 g, respectively).  相似文献   

15.
The study is aimed to evaluate the efficiency of ultrasound-assisted extraction (UAE) as a simple strategy focused on sample preparation for metal determination in biological samples. The extraction of sodium and potassium extraction was carried out from swine feed followed by determination of the concentration of these metals by flame atomic emission spectrometry (FAES). The experiment was performed to cover the study of the variables influencing the extraction process and its optimal conditions (sample mass, particle size, acid concentration, sonication time and ultrasound power); the determination of these analytical characteristics and method validation using certified reference material; and the analysis of pre-starter diets. The optimal conditions established conditions were as follows: mass: 100 mg, particle size:<60 μm, acid concentration: 0.10 mol L?1 HCl, sonication time: 50 s and ultrasound power: 102 W. The proposed method (UAE) was applied in digestibility assays of those nutrients present in different piglet pre-starter feeds and their results proved to be compatible with those obtained from mineralized samples (P < 0.05). The ultrasound extraction method was demonstrated to be an excellent alternative for handless sampling and operational costs and the method also has the advantage of does not generating toxic residues that may negatively affect human health and contaminate the environment.  相似文献   

16.
In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70 °C and 20 mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20 kHz for 15 min, ultrasound amplitude of 40% (692 W dm−3) and using a diluted extraction solution (3% v/v HNO3 + 2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500 rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks.  相似文献   

17.
This study examined anthocyanin extraction using the application of ultrasound to raw freeze dried, microwaved and raw sliced Purple Majesty potato, a new pigmented potato variety rich in anthocyanins. A 20 kHz probe was used for the sonication at 3 different amplitudes (30%, 50% and 70%) and ethanol in water at different ratios (50:50 and 70:30 v/v) was used for the extraction. Anthocyanin extraction from raw freeze dried purple potato was optimal at an ethanol:water ratio (70:30; v/v) after 5 min of ultrasonication, while the least amount of anthocyanins was extracted from raw sliced potatoes. The application of microwaves (as a pre-treatment) before the UAE resulted in an increase in the amount of anthocyanins extracted and a decrease in the amount of solvent used. Analysis of variance showed that potato form, ultrasonication time, ultrasonication amplitude and solvent ratio as well as two and three way interactions between some of these factors had a very significant effect (p < 0.000) on the amount of anthocyanins extracted.  相似文献   

18.
Ultrasound-assisted extraction was used for extraction of bioactive compounds and for production of Allium ursinum liquid extract. The experiments were carried out according to tree level, four variables, face-centered cubic experimental design (FDC) combined with response surface methodology (RSM). Temperature (from 40 to 80 °C), ethanol concentration (from 30% to 70%), extraction time (from 40 to 80 min) and ultrasonic power (from 19.2 to 38.4 W/L) were investigated as independent variables in order to obtain the optimal conditions for extraction and to maximize the yield of total phenols (TP), flavonoids (TF) and antioxidant activity of obtained extracts. Experimental results were fitted to the second order polynomial model where multiple regression and analysis of variance were used to determine the fitness of the model and optimal condition for investigated responses. The predicted values of the TP (1.60 g GAE/100 g DW), TF (0.35 g CE/100 g DW), antioxidant activity, IC50 (0.71 mg/ml) and EY (38.1%) were determined at the optimal conditions for ultrasound assisted extraction: 80 °C temperature, 70% ethanol, 79.8 min and 20.06 W/L ultrasonic power. The predicted results matched well with the experimental results obtained using optimal extraction conditions which validated the RSM model with a good correlation.  相似文献   

19.
Ultrasound-assisted extraction (UAE) of antioxidant polyphenols from chicory grounds was studied in order to propose a suitable valorization of this food industry by-product. The main parameters influencing the extraction process were identified. A new mathematical model for multi-criteria optimization of UAE was proposed. This kinetic model permitted the following and the prediction of the yield of extracted polyphenols, the antioxidant activity of the obtained extracts and the energy consumption during the extraction process in wide ranges of temperature (20–60 °C), ethanol content in the solvent (0–60% (vol.) in ethanol–water mixtures) and ultrasound power (0–100 W). After experimental validation of the model, several simulations at different technological restrictions were performed to illustrate the potentiality of the model to find the optimal conditions for obtaining a given yield within minimal process duration or with minimal energy consumption. The advantage of ultrasound assistance was clearly demonstrated both for the reduction of extraction duration and for the reduction of energy consumption.  相似文献   

20.
In this study, an aqueous ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the four acetophenones, namely 4-hydroxyacetophenone (1), 2,5-dihydroxyacetophenone (2), baishouwubenzophenone (3) and 2,4-dihydroxyacetophenone (4) from the Chinese medicinal plant Cynanchum bungei was developed. Three kinds of aqueous l-alkyl-3-methylimidazolium ionic liquids with different anion and alkyl chain were investigated. The results indicated that ionic liquids (ILs) showed remarkable effects on the extraction efficiency of acetophenones. In addition, the ILUAE, including several ultrasonic parameters, such as the ILs concentration, solvent to solid ratio, power, particle size, temperature, and extraction time have been optimized. Under these optimal conditions (e.g., with 0.6 M [C4MIM]BF4, solvent to solid ratio of 35:1, power of 175 W, particle size of 60–80 mesh, temperature of 25 °C and time of 50 min), this approach gained the highest extraction yields of four acetophenones 286.15, 21.65, 632.58 and 205.38 μg/g, respectively. The proposed approach has been evaluated by comparison with the conventional heat-reflux extraction (HRE) and regular UAE. The results indicated that ILUAE is an alternative method for extracting acetophenones from C. bungei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号