首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
To prepare water‐soluble, syndiotacticity‐rich poly(vinyl alcohol) (PVA) microfibrils for various industrial applications, we synthesized syndiotacticity‐rich, low molecular weight PVA by the solution polymerization of vinyl pivalate (VPi) in tetrahydrofuran (THF) at low temperatures with 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN) as an initiator and successive saponification of poly(vinyl pivalate) (PVPi). Effects of the initiator and monomer concentrations and the polymerization temperature were investigated in terms of the polymerization behaviors and molecular structures of PVPi and the corresponding syndiotacticity‐rich PVA. The polymerization rate of VPi in THF was proportional to the 0.91 power of the ADMVN concentration, indicating the heterogeneous nature of THF polymerization. The low‐temperature solution polymerization of VPi in THF with ADMVN proved to be successful in obtaining water‐soluble PVA with a number‐average degree of polymerization (Pn) of 300–900, a syndiotactic dyad content of 60–63%, and an ultimate conversion of VPi into PVPi of over 75%. Despite the low molecular weight of PVA with Pn = 800, water‐soluble PVA microfibrillar fibers were prepared because of the high level of syndiotacticity. In contrast, for PVA with Pn = 330, shapeless and globular morphologies were observed, indicating that molecular weight has an important role in the in situ fibrillation of syndiotacticity‐rich PVA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1103–1111, 2002  相似文献   

2.
The viscoelastic behavior and molecular motion of highly syndiotactic poly(vinyl alcohol) (S‐PVA) fibers with a dyad syndiotacticity (r) of 69% were studied by dynamic mechanical thermal analysis and wide‐angle X‐ray diffraction and compared with those of atactic poly(vinyl alcohol) (A‐PVA) fibers with r = 54%. The βc dispersion, based on the molecular motion of the chain molecules in the crystalline regions, was observed for A‐PVA around 120–140 °C, and the only primary (αc) dispersion was observed for S‐PVA around 180 °C. The thermal expansion coefficients for the a and c axes of the A‐PVA crystal changed discontinuously around 120 °C, which corresponded to the βc dispersion. For S‐PVA, the coefficient for the (002) plane changed discontinuously around 100 °C, similarly to A‐PVA, but that for the (100) plane remained unchanged between 20 and 220 °C. These results showed that the intermolecular hydrogen bonding of S‐PVA was stronger in the direction of the a axis than in the other directions, suppressing the βc dispersion. The storage modulus and thermal expansion coefficient of the (020) plane (molecular axis) of S‐PVA decreased markedly around 180 °C, and this indicated that the αc dispersion was due to the torsional motion of the molecular chains in the crystalline regions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 800–808, 2004  相似文献   

3.
Nonlinear optical properties of poly(vinyl alcohol) (PVA)/polyaniline (PAni) blends were measured with the single‐beam Z‐scan technique with Fourier analysis. The results obtained with continuous wave (cw) excitation indicated that the self‐phase modulation had a thermal origin. Besides the Z‐scan technique, we also employed the time‐resolved mode‐mismatched thermal lens (TL) technique to obtain the temperature coefficient of the optical path length, ds/dT, and the thermal diffusivity coefficient, D, for the specific concentrations used in our blends. ds/dT varied between ?0.8 and ?1.0 × 10?4 K?1, whereas the thermal diffusivity varied between 1.0 and 1.3 × 10?3 cm2/s. The TL technique was further used to study the aging of the blends as they were heated to 90 °C. Unlike the electrical conductivity of PAni films, which presented a strong dependence on the doping level, the thermooptic properties presented only a slight variation with doping. This feature indicated that the PVA/glutaraldehyde network made the main contribution to the thermooptic properties (D and ds/dT) in the PAni blends. Similarly, dimethyl sulfoxide as a solvent determined the thermooptic properties of PAni solutions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1949–1956, 2002  相似文献   

4.
Poly(vinyl alcohol) (PVA) physical hydrogels were prepared by repeated freeze–thawing cycles using aqueous solutions of two PVA samples having different degrees of syndiotacticity, a‐PVA and s‐PVA with 55% and 61% of syndiotactic diads, respectively. The hydrogels were prepared in the presence of different amounts of lactosilated chitosan derivatives (LC) of different molecular weight. The PVA stereoregularity was found to have a dramatic effect on the amount of PVA incorporated into the hydrogels, leading to remarkable differences in the swelling degree and porosity of a‐PVA and s‐PVA hydrogels. A significant amount of LC was retained in the hydrogels after equilibrium swelling. The swelling of the a‐PVA hydrogels was found to increase significantly by increasing the amount of LC while it was only slightly increased in the case of s‐PVA hydrogels. The amount of LC released after equilibrium swelling was lower when chitosan derivatives with higher molecular weights were used. Increased initial concentrations of LC resulted in much higher porosity of the hydrogels. TGA and DSC studies showed that LC is stabilized by the incorporation in the PVA hydrogels. The melting temperature of the crystalline regions of PVA was not significantly influenced by LC. Conversely, the extension of the crystalline domains increased in the presence of LC. The retention of a chitosan derivative bearing β‐D ‐galactose side chain residues makes these hydrogels potentially useful as scaffolds for hepatocytes culture.

Scanning electron micrographs of PVA‐LC hydrogels: (a) a‐PVA; (b) a‐PVA/LC150 80:20; (c) a‐PVA/LC150 50:50.  相似文献   


5.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   

6.
Aqueous solutions of syndiotacticity-rich poly(vinyl alcohol) (s-PVA) form gels easily. The optimum condition of growth of the calcium tartrate crystal formed by diffusing calcium chloride into hydrogels containing tartaric acid was studied with use ofs- PVA of a syndiotacticity of 56 % and a degree of polymerization of 1460. The crystal grew in the gel of the concentrations of 2 % s-PVA and of 0.5 N tartaric acid at pH=4. The relation between the formation of Liesegang rings and shear modulus of a gel was studied by diffusing silver nitrate into gels containing potassium chromate. The distance between rings decreased with increasing shear modulus of a gel in the range from 670 to 7500 dyne/cm2. The Liesegang rings were not formed for the shear modulus gel for 280 and 16200 dyne/cm2.  相似文献   

7.
A vermiculite (VMT) dispersion in water was blended with aqueous poly(vinyl alcohol) (PVA). The properties of the PVA–VMT nanocomposites greatly depended on the preparation procedure because of the chemical reactions and physical interactions involved. The samples were prepared in two steps to investigate the properties of the PVA–VMT nanocomposites. The VMT was first pretreated and delaminated with hydrochloric acid. The delaminated VMT was then added to the PVA solution with various mixing times. The structure and properties of the films were investigated. From X‐ray diffraction and transmission electron microscopy, the VMT layers were found to be well dispersed individually in the PVA–VMT blends. The effect of the VMT content on the thermal behavior of the PVA–VMT blends was also studied with differential scanning calorimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 749–755, 2003  相似文献   

8.
To effectively orient the molecular chains of novel syndiotactic poly(vinyl alcohol) (PVA) microfibrillar fiber (PVA fibril), a high‐temperature zone‐drawing method was adopted. The PVA fibrils were directly prepared from the saponification and in situ fibrillation without a spinning procedure. The maximum draw ratio of the PVA fibril increased with a decrease in the syndiotactic diad (r‐diad) content, indicating that the deformability of PVA molecules was lowered in higher syndiotactic PVA. Degree of crystal orientations up to 0.990 were achieved by stretching the PVA fibril with the r‐diad content of 65.1% and the original degree of crystal orientation of 0.902 at 250 °C close to its crystal melting temperature (Tm). When the same draw ratio was applied to the fibrils, a higher crystal orientation was achieved for the fibrils having higher syndiotacticity. Wide‐angle X‐ray data show that the longitudinal crystal sizes of drawn PVA fibrils were larger in higher syndiotacticities. The degree of crystal orientation, crystallinity, Tm, longitudinal crystal size, and tensile strength of the maximum drawn PVA fibril with a r‐diad content of 65.1% were 0.99, 0.97, 279 °C, 187 Å, and 4.66 N/tex, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1263–1271, 2001  相似文献   

9.
To improve the drawability of poly(vinyl alcohol) (PVA) thermal products, poly(ethylene oxide) (PEO), a special resin with good flexibility, excellent lubricity, and compatibility with many resins, was applied, and the Fourier transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WXRD) were adopted to study the hydrogen bonds, water states, thermal properties, crystal structure, and nonisothermal crystallization of modified PVA. It was found that PEO formed strong hydrogen bonds with water and PVA, thus weakened the intra‐ and inter‐hydrogen bonds of PVA, changed the aggregation states of PVA chains, and decreased its melting point and crystallinity. Moreover, the interactions among PVA, water, and PEO retarded the water evaporation and made more water remain in the system to plasticize PVA. The existence of PEO also slowed down the melt crystallization process of PVA, however, increased the nucleation points of system, thus made more and smaller spherulites formed. The weakened crystallization capability of PVA and the lubrication of PEO made PVA chains to have more mobility under the outside force and obtain high mechanical properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1946–1954, 2010  相似文献   

10.
Amphiphilic and heterotactic‐rich poly(vinyl alcohol) (PVA) macromonomer, that is, PVA having a phenyl or phenoxyethyl methacrylate unit as the polymerizable end group, was synthesized via the aldol‐type group‐transfer polymerization (aldol‐GTP) technique. Aldol‐GTPs of vinyloxytriethylsilane (VOTES) were carried out in dichloromethane with 4‐methacryloylbenzaldehyde and 4‐(2‐methacryloylethoxy)benzaldehyde as the initiators with various Lewis acids. The polymerizations proceeded smoothly to give silylated PVA macromonomers (number‐average molecular weights: 1.3 × 103–1.96 × 104). Poly(VOTES) was easily desilylated to give heterotactic‐rich PVA macromonomer in good yield. The critical micelle concentration of the PVA macromonomer was determined by surface‐tension measurement. Micellar polymerization of the amphiphilic macromonomer gave comb‐shaped (graft) polymer having PVA side chains effectively (conversion: 80–82%), whereas polymerization in dimethyl sulfoxide (homogeneous state) did not. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4477–4484, 2002  相似文献   

11.
The chemical modification of poly(vinyl alcohol) (PVA) was performed through oxidation followed by nucleophilic addition. PVA was oxidized by KMnO4 to form vinyl ketone units along the polymer backbone. The chemical modification of PVA was then conducted through the reaction of the carbonyl group of the vinyl ketone unit with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) as a nucleophile. Through this approach, the phosphorous DOPO group was attached onto the carbon atom of the polymer main chain rather than onto the pendent hydroxyl groups of PVA. The formed DOPO‐containing PVA showed improved thermal stability, organosolubility, and flame retardance. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1107–1113, 2003  相似文献   

12.
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (1H NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, 1H NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times.  相似文献   

13.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

14.
We have measured the self‐diffusion coefficients of a series of oligo‐ and poly(ethylene glycol)s with molecular weights ranging from 150 to 10,000, in aqueous solutions and gels of poly(vinyl alcohol) (PVA), using the pulsed‐gradient spin‐echo NMR techniques. The PVA concentrations varied from 0 to 0.38 g/mL which ranged from dilute solutions to polymer gels. Effects of the diffusant size and polymer concentration on the self‐diffusion coefficients have been investigated. The temperature dependence of the self‐diffusion coefficients has also been studied for poly(ethylene glycol)s with molecular weights of 600 and 2,000. Several theoretical models based on different physical concepts are used to fit the experimental data. The suitability of these models in the interpretation of the self‐diffusion data is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2396–2403, 1999  相似文献   

15.
A methodology for the synthesis of well‐defined poly(ethylene oxide)‐block‐poly(vinyl alcohol) (PEO‐b‐PVA) and PVA‐b‐PEO‐b‐PVA polymers was reported. Novel xanthate end‐functionalized PEOs were synthesized by a series of end‐group transformations. They were then used to mediate the reversible addition–fragmentation chain transfer polymerization of vinyl acetate to obtain well‐defined poly(ethylene oxide)‐b‐poly(vinyl acetate) (PEO‐b‐PVAc) and PVAc‐b‐PEO‐b‐PVAc. When these block copolymers were directly hydrolyzed in methanol solution of sodium hydroxide, polymers with brown color were obtained, which was due to the formation of conjugated unsaturated aldehyde structures. To circumvent these side reactions, the xanthate groups were removed by adding a primary amine before hydrolysis and the products thus obtained were white powders. The polymers were characterized by gel permeation chromatography, 1H NMR spectroscopy and FT‐IR. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1901–1910, 2009  相似文献   

16.
Liquid–liquid equillibria (LLE) of the tertiary system of hydroxypropylated polyrotaxane (HPPR)–poly(vinyl alcohol) (PVA)–solvent have been investigated by focusing on the internal structures of HPPR–PVA blend gels. The phase diagrams of the HPPR–PVA aqueous systems displayed two liquid phases at a high concentration and molecular weight of PVA. This result was consistent with the prediction of the Flory–Huggins lattice model. On the contrary, the HPPR–PVA–DMSO system exhibited only a single phase. The HPPR–PVA blend gels crosslinked in dimethylsulfoxide (DMSO) were highly transparent over a wide concentration range, while the gels prepared in water were opaque at high polymer concentrations. Spherical domains were observed in the opaque gels by laser scanning confocal microscopy, and the sizes of the domains were significantly dependent on the amount of cross-linking reagent utilized. These results indicated that the transparency of the HPPR–PVA blend gels was strongly affected by the competition between the liquid–liquid two-phase separation and the crosslinking HPPR and PVA polymers during the preparation of the blend gels.  相似文献   

17.
The properties of the aged gels of high molecular weight syndiotacticity-rich poly(vinyl alcohol)s (HMW S-PVAs) with different syndiotactic diad (s-diad) contents were investigated. HMW S-PVA gels with s-diad content of 61.5% and 58.2% showed the rapid increases of the syneresis and the turbidity from the early stage of aging time, which is ascribable to the phase separation, while that with s-diad content of 55.7% did not. From the morphological study, it was confirmed that the phase separation in HMW S-PVA gel with s-diad content of 61.5% occurred without the liquid-liquid phase separation in sol state, whereas both the liquid-liquid phase separation in sol state and the subsequent phase separation in gel state occurred in the case of HMW S-PVA gel with s-diad content of 58.2%. On the other hand, HMW S-PVA gel with s-diad content of 55.7% showed neither the liquid-liquid phase separation in sol state nor the phase separation in gel state in the long period of time. It was also confirmed from wide angle X-ray diffractogram that the crystallization was accompanied by the phase separation in gel state in the aging process of PVA gel. However, the crystallization was hindered by the fast network formation at the initial stage of time. Later the syndiotacticity promoted the crystallization. The tensile modulus of HMW S-PVA gel with higher syndiotacticity increased more significantly with time. Received: 2 December 1999/Accepted: 12 July 2000  相似文献   

18.
An investigation of miscibility and isothermal crystallization behavior of Polyamide 6 (PA6)/Poly(vinyl alcohol) (PVA) blends was conducted. Fourier transform infrared spectra (FTIR) analysis indicated that the interactions between the carbonyl groups of PA6 and hydroxyl groups of PVA increase as the weight ratios of PA6 to PVA of PA6/PVA specimens increase. This interaction between PA6 and PVA leads to their miscibility in the amorphous region and even some extent effects on their crystal phase, respectively. Further isothermal crystallization behavior of PA6/PVA indicate that the miscibility of PVA in PA6 leading difficulty in crystallization of PA6. Several kinetics equations are employed to describe the effects of PVA on the crystallization properties of PA6 in PA6/PVA blends in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1360–1368, 2008  相似文献   

19.
The high selectivity of solid‐state crosslinked poly(vinyl alcohol) (CPVA) membranes containing silver hexafluoroantimonate (AgSbF6), with respect to olefin/paraffin mixtures, was previously reported. The structure and coordination properties of CPVA/AgSbF6 complexes were investigated in this study with wide‐angle X‐ray scattering (WAXS), differential scanning calorimetry (DSC), X‐ray photoelectron spectroscopy (XPS), and theoretical ab initio calculations, and they were compared with those of poly(vinyl alcohol) (PVA)/AgSbF6 complexes. Contrary to expectations, the measurements of the intersegmental d‐spacings and glass‐transition temperatures indicated that the chain mobility in the PVA/AgSbF6 membranes was lower than that in the CPVA/AgSbF6 membranes. The different extents of transient crosslinking in the two systems were attributed mostly to their different coordination structures; silver ions in PVA/AgSbF6 were coordinated with hydroxyl oxygens located near the polymer main chains, whereas those in CPVA/AgSbF6 were coordinated with aldehyde oxygens located far from the main chains. According to WAXS spectra, AgSbF6 was completely dissolved in both PVA and CPVA, and this disrupted the crystallinity of the polymers. However, our DSC study showed that the silver ions dissolved in both polymer matrices recrystallized into silver oxide at elevated temperatures. The binding energy of Ag3d5/2, as determined from XPS spectra, shifted to lower values with the addition of increasing amounts of the polymer matrix, indicating the increasing coordination of silver ions with polymer chains. The presence of various oxygen species with and without coordination to silver ions was confirmed from O1s XPS spectra of CPVA membranes containing silver ions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 621–628, 2004  相似文献   

20.
In this article we report on the investigation of the dynamics of poly(vinyl alcohol) (PVA) and PVA‐based composite films by means of dielectric spectroscopy and dynamic mechanical thermal analysis. Once the characterization of pure PVA was done, we studied the effect of a nanostructured magnetic filler (nanosized CoFe2O4 particles homogeneously dispersed within a sulfonated polystyrene matrix) on the dynamics of PVA. Our results suggest that the α‐relaxation process, corresponding to the glass transition of PVA, is affected by the filler. The glass‐transition temperature of PVA increases with filler content up to compositions of around 10 wt %, probably as a result of polymer–filler interactions that reduce the polymer chain mobility. For filler contents higher than 10 wt %, the glass‐transition temperature of PVA decreases as a result of the absorption of water that causes a plasticizing effect. The β‐ and γ‐relaxation processes of PVA are not affected by the filler as stated from both dynamic mechanical thermal analysis and dielectric spectroscopy. Nevertheless, both relaxation processes are greatly affected by the moisture content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1968–1975, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号