首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films have been deposited on glass substrates by pulsed laser deposition (PLD) technique. The effects of substrate temperature and post-deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The properties of the films have been characterized through Hall effect, double beam spectrophotometer and X-ray diffraction. The experimental results show that the electrical resistivity of film deposited at 200 °C is 8.12 × 10−4 Ω cm, and can be further decreased to 4.74 × 10−4 Ω cm with post-deposition annealing at 400 °C for 2 h under 3 × 10−3 Pa. In the meantime, its band gap energy can be increased to 3.90 eV from 3.83 eV. The annealing process leads to improvement of (0 0 2) orientation, wider band gap, increased carrier concentration and blue-shift of absorption edge in the transmission spectra of ZMO:Ga thin films.  相似文献   

2.
J.Y. Lee 《Optics Communications》2009,282(12):2362-3085
Sn doped In2O3 (ITO) single layer and a sandwich structure of ITO/metal/ITO (IMI) multilayer films were deposited on a polycarbonate substrate using radio-frequency and direct-current magnetron sputtering process without substrate heating. The intermediated metal films in the IMI structure were Au and Cu films and the thickness of each layer in the IMI films was kept constant at 50 nm/10 nm/40 nm. In this study, the ITO/Au/ITO films show the lowest resistivity of 5.6 × 10−5 Ω cm.However the films show the lower optical transmission of 71% at 550 nm than that (81%) of as deposited ITO films. The ITO/Cu/ITO films show an optical transmittance of 54% and electrical resistivity of 1.5 × 10−4 Ω cm. Only the ITO/Au/ITO films showed the diffraction peaks in the XRD pattern. The figure of merit indicated that the ITO/Au/ITO films performed better in a transparent conducting electrode than in ITO single layer films and ITO/Cu/ITO films.  相似文献   

3.
Tin-doped indium oxide (ITO) films with 200 nm thickness were deposited on glass substrates by DC magnetron sputtering at room temperature. And they were annealed by rapid thermal annealing (RTA) method in vacuum ambient at different temperature for 60 s. The effect of annealing temperature on the structural, electrical and optical properties of ITO films was investigated. As the RTA temperature increases, the resistivity of ITO films decreases dramatically, and the transmittance in the visible region increases obviously. The ITO film annealed at 600 °C by RTA in vacuum shows a resistivity of 1.6 × 10−4 Ω cm and a transmittance of 92%.  相似文献   

4.
Highly transparent conductive Al2O3 doped zinc oxide (AZO) thin films have been deposited on the glass substrate by pulsed laser deposition technique. The effects of substrate temperature and post-deposition annealing treatment on structural, electrical and optical properties of AZO thin films were investigated. The experimental results show that the electrical resistivity of films deposited at 240 °C is 6.1 × 10−4 Ω cm, which can be further reduced to as low as 4.7 × 10−4 Ω cm by post-deposition annealing at 400 °C for 2 h in argon. The average transmission of AZO films in the visible range is 90%. The optical direct band gap of films was dependent on the substrate temperature and the annealing treatment in argon. The optical direct band gap value of AZO films increased with increasing annealing temperature.  相似文献   

5.
Indium tin oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) on glass substrate at room temperature. Structural, optical, and electrical properties of these films were analyzed in order to investigate its dependence on oxygen pressure, and rapid thermal annealing (RTA) temperature. High quality ITO films with a low resistivity of 3.3 × 10−4 Ω cm and a transparency above 90% were able to be formed at an oxygen pressure of 2.0 Pa and an RTA temperature of 400 °C. A four-point probe method, X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-NIR grating spectrometer are used to investigate the properties of ITO films.  相似文献   

6.
This study investigated the optical and electrical properties of Nb-doped TiO2 thin films prepared by pulsed laser deposition (PLD). The PLD conditions were optimized to fabricate Nb-doped TiO2 thin films with an improved electrical conductivity and crystalline structure. XRD analyses revealed that the deposition at room temperature in 0.92 Pa O2 was suitable to produce anatase-type TiO2. A Nb-doped TiO2 thin film attained a resistivity as low as 6.7 × 10−4 Ω cm after annealing at 350 °C in vacuum (<10−5 Pa), thereby maintaining the transmittance as high as 60% in the UV-vis region.  相似文献   

7.
Transparent conducting thin films of ZnO:Al (Al-doped ZnO, AZO) were prepared via pulsed DC magnetron sputtering with good transparency and relatively lower resistivity. The AZO films with 800 nm in thickness were deposited on soda-lime glass substrates keeping at 473 K under 0.4 Pa working pressure, 150 W power, 100 μs duty time, 5 μs pulse reverse time, 10 kHz pulse frequency and 95% duty cycle. The as-deposited AZO thin films has resistivity of 6.39 × 10−4 Ω cm measured at room temperature with average visible optical transmittance, Ttotal of 81.9% under which the carrier concentration and mobility were 1.95 × 1021 cm−3 and 5.02 cm2 V−1 s−1, respectively. The films were further etched in different aqueous solutions, 0.5% HCl, 5% oxalic acid, 33% KOH, to conform light scattering properties. The resultant films etched in 0.5% HCl solution for 30 s exhibited high Ttotal = 78.4% with haze value, HT = 0.1 and good electrical properties, ρ = 8.5 × 10−4 Ω cm while those etched in 5% oxalic acid for 150 s had desirable HT = 0.2 and relatively low electrical resistivity, ρ = 7.9 × 10−4 Ω cm. However, the visible transmittance, Ttotal was declined to 72.1%.  相似文献   

8.
Indium tin oxide (ITO) thin films were deposited onto glass substrates by rf magnetron sputtering of ITO target and the influence of substrate temperature on the properties of the films were investigated. The structural characteristics showed a dependence on the oxygen partial pressure during sputtering. Oxygen deficient films showed (4 0 0) plane texturing while oxygen-incorporated films were preferentially oriented in the [1 1 1] direction. ITO films with low resistivity of 2.05 × 10−3 Ω cm were deposited at relatively low substrate temperature (150 °C) which shows highest figure of merit of 2.84 × 10−3 square/Ω⋅  相似文献   

9.
Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by RF magnetron sputtering at room temperature. The deposition pressure was varied from 0.6 to 2.5 Pa. A transformation from a relatively compact structure to individual grains was observed with the increase of deposition pressure. As the deposition pressure increases, the resistivity increases sharply due to both, the decrease of hall mobility and carrier concentration. The lowest resistivity achieved was 2.07 × 10−3 Ω cm at a deposition pressure of 0.6 Pa with a hall mobility of 16 cm2 V−1 s−1 and a carrier concentration of 1.95 × 1020 cm−3. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c-axis. All the films present a high transmittance of above 90% in the visible range. The optical band gap decreases from 3.35 to 3.20 eV as the deposition pressure increases from 0.6 to 2.5 Pa.  相似文献   

10.
ZnO films doped with Ga (GZO) of varying composition were prepared on Corning glass substrate by radio frequency magnetron sputtering at various deposition temperatures of room temperature, 150, 250 and 400 °C, and their temperature dependent photoelectric and structural properties were correlated with Ga composition. With increasing deposition temperature, the Ga content, at which the lowest electrical resistivity and the best crystallinity were observed, decreased. Films with optimal electrical resistivity of 2-3 × 10−4 Ω cm and with good crystallinity were obtained in the substrate temperature range from 150 to 250 °C, and the corresponding CGa/(CGa + CZn) atomic ratio was about 0.049. GZO films grown at room temperature had coarse columnar structure and low optical transmittance, while films deposited at 400 °C yielded the highest figure of merit (FOM) due to very low optical absorption despite rather moderate electrical resistivity slightly higher than 4 × 10−4 Ω cm. The optimum Ga content at which the maximum figure of merit was obtained decreased with increasing deposition temperature.  相似文献   

11.
The physical, chemical, electrical and optical properties of as-deposited and annealed CdIn2O4 thin films deposited using spray pyrolysis technique at different nozzle-to-substrate distances are reported. These films are characterized by X-ray diffraction, XPS, SEM, PL, Hall effect measurement techniques and optical absorption studies. The average film thickness lies within 600-800 nm range. The X-ray diffraction study shows that films exhibit cubic structure with orientation along (3 1 1) plane. The XPS study reveals that CdIn2O4 films are oxygen deficient. Room temperature PL indicates the presence of green shift with oxygen vacancies. The typical films show very smooth morphology. The best films deposited with optimum nozzle-to-substrate distance (NSD) of 30 cm, has minimum resistivity of 1.3 × 10−3 Ω cm and 2.6 × 10−4 Ω−1 figure of merit. The band gap energy varies from 3.04 to 3.2 eV with change in NSD for annealed films. The effect of NSD as well as the annealing treatment resulted into the improvement of the structural, electrical and optical properties of the studied CdIn2O4 thin films.  相似文献   

12.
Aluminum doped zinc oxide (AZO) films were substitutes of the SnO2:F films on soda lime glass substrate in the amorphous thin-film solar cells due to good properties and low cost. In order to improve properties of AZO films, the TiO2 buffer layer had been introduced. AZO films with and without TiO2 buffer layer were deposited on soda lime glass substrates by r.f. magnetron sputtering. Subsequently, one group samples were annealed in vacuum (0.1 Pa) at 500 °C for 120 s using the RTA system, and the influence of TiO2 thickness on the properties of AZO films had been discussed. The XRD measurement results showed that all the films had a preferentially oriented (0 0 2) peak, and the intensity of (0 0 2) peak had been enhanced for the AZO films with TiO2 buffer layer. The resistivity of TiO2 (3.0 nm)/AZO double-layer film is 4.76×10−4 Ω cm with the maximum figure merit of 1.92×10−2 Ω−1, and the resistivity has a remarkable 28.7% decrease comparing with that of the single AZO film. The carrier scattering mechanism of TiO2 (3.0 nm)/AZO double-layer film had been described by Hall measurement in different temperatures. The average transmittance of all the films exceeded 92% in the visible spectrum. Another group samples were heat treated in the quartz tube in air atmosphere, and the effect of TiO2 thickness on thermal stability of AZO films had been discussed.  相似文献   

13.
The sputtering pressures maintained during the deposition of Cu2O films, by dc reactive magnetron sputtering, influence the structural, electrical and optical properties. The crystalline orientation mainly depends on the sputtering pressure. The films deposited at a sputtering pressure of 4 Pa showed single-phase Cu2O films along (1 1 1) direction. The electrical resistivity of the films increased from 1.1 × 101 Ω cm to 3.2 × 103 Ω cm. The transmittance of the films increased from 69% to 88% with the increase of sputtering pressure from 2.5 Pa to 8 Pa.  相似文献   

14.
Sn doped In2O3 films are deposited by rf-magnetron sputtering at 300 °C under Ar, Ar + O2 and Ar + H2 gas ambients. For the film prepared under argon ambient, electrical resistivity 6.5 × 10−4 Ω cm and 95% optical transmission in the visible region have been achieved optimizing the power and chamber pressure during the film deposition. X-ray diffraction spectra of the ITO film reveal (2 2 2) and (4 0 0) crystallographic planes of In2O3. With the introduction of 1.33% oxygen in argon, (2 2 2) peak of In2O3 decreases and resistivity increases for the deposited film. With further increase of oxygen in the sputtering gas mixture crystallinity in the film deteriorates and both the peaks disappeared. On the other hand, when 1.33% hydrogen is mixed with argon, the resistivity of the deposited film decreases to 5.5 × 10−4 Ω cm and the crystallinity remains almost unchanged. In case of reactive sputtering, the deposition rate is lower compared to that in case of non-reactive sputtering. HRTEM and first Fourier patterns show the highly crystalline structure of the samples deposited under Ar and Ar + H2 ambients. Crystallinity of the film becomes lower with the introduction of oxygen in argon but refractive index increases from 1.86 to 1.9. The surface morphology of the ITO films have been studied by high resolution scanning electron microscopy.  相似文献   

15.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

16.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

17.
Nanocrystalline nickel-zinc ferrite thin films with the general formula Ni1−xZnxFe2O4, where x=0.0, 0.2, 0.4 and 0.6 were fabricated via a chemical route known as the citrate precursor route. These films were spin-deposited on indium-tin oxide coated glass, fused quartz and amorphous Si-wafer substrates, and annealed at various temperatures up to 650 °C. The films annealed below 400 °C were found to be X-ray amorphous, while the films annealed at and above 400 °C were polycrystalline exhibiting a single-phase spinel structure. The average grain size of the films evaluated by transmission electron microscopy, is found to be in the range 4-8.5 nm. The room temperature DC resistivity of the films is in the range 103-107 Ω m. Dielectric constant and dielectric loss were measured in the frequency range 100 Hz-1 MHz. Dielectric constant of the films is found to lie between 25 and 44, while the loss factor is if the order of 10−2. The higher values of the dielectric constant for films having higher zinc concentration are attributable to the enhanced hopping between Fe2+ and Fe3+ ions in these samples. The M-H hysteresis measurement of the nickel ferrite thin films annealed at 650 °C showed narrow hysteresis loop—a characteristic of soft ferromagnetic material.  相似文献   

18.
Ga doped ZnO (GZO) thin films were deposited on glass substrates at room temperature by continuous composition spread (CCS) method. CCS is thin films growth method of various GaxZn1−xO(GZO) thin film compositions on a substrate, and evaluating critical properties as a function position, which is directly related to material composition. Various compositions of Ga doped ZnO deposited at room temperature were explored to find excellent electrical and optical properties. Optimized GZO thin films with a low resistivity of 1.46 × 10−3 Ω cm and an average transmittance above 90% in the 550 nm wavelength region were able to be formed at an Ar pressure of 2.66 Pa and a room temperature. Also, optimized composition of the GZO thin film which had the lowest resistivity and high transmittance was found at 0.8 wt.% Ga2O3 doped in ZnO.  相似文献   

19.
Fluorine and hydrogen co-doped ZnO:Al (AZO) films were prepared by radio frequency (rf) magnetron sputtering of ZnO targets containing 1 wt.% Al2O3 on Corning glass at substrate temperature of 150 °C with Ar/CF4/H2 gas mixtures, and the structural, electrical and optical properties of the as-deposited and the vacuum-annealed films were investigated. In as-deposited state, films with fairly low resistivity of 3.9-4 × 10−4 Ω cm and very low absorption coefficient below 900 cm−1 when averaged in 400-800 nm could be fabricated. After vacuum-heating at 300 °C, the minimum resistivity of 2.9 × 10−4 Ω cm combined with low absorption loss in visible region, which enabled the figure of merit to uplift as high as 4 Ω−1, could be obtained for vacuum-annealed film. It was shown that, unlike hydrogenated ZnO films which resulted in degradation upon heating in vacuum at moderately high temperature, films with fluorine addition could yield improved electrical properties mostly due to enhanced Hall mobility while preserving carrier concentration level. Furthermore, stability in oxidizing environment could be improved by fluorine addition, which was ascribed to the filling effect of dangling bonds at the grain boundaries. These results showed that co-doping of hydrogen and fluorine into AZO films with low Al concentration could be remarkably compatible with thin film solar cell applications.  相似文献   

20.
We use the third harmonics of Nd:YAG laser (λ = 355 nm) for simultaneous precursor conversion and dopant activation on sol-gel ITO thin films at a laser fluence range of 700-1000 mJ/cm2. A minimum resistivity of 5.37 × 10−2 Ω-cm with a corresponding carrier concentration of 6 × 1019 cm−3 is achieved at laser irradiation fluence of 900 mJ/cm2. X-ray photoelectron analysis reveals that extremely high tin concentration of 19.4 at.% and above is presented in the laser-cured ITO thin films compared with 8.7 at.% in the 500 °C thermally cured counterpart. These excess tin-ions form complex defects, which contribute no free carriers but act as scattering centers, causing inferior electrical properties of the laser-cured films in comparison with the thermally cured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号