首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Cu-ZnO-Cr2O3/SiO2 catalysts were prepared by impregnation method, which exhibited high activity for the dehydrogenation of 2-butanol to 2-butanone. These catalysts were characterized by means of XRD, EPR and BET. The experimental results indicated that (i) the valence states of copper play a key role, (ii) groups of copper atoms were the main active sites in this reaction, and (iii) copper oxide would lead to the condensation product of 5-methyl-3-heptanone.  相似文献   

2.
采用溶胶-凝胶和浸渍法制备Cu/SiO2催化剂, 研究了不同制备方法对催化剂表面Cu物种的存在状态和其催化性能的影响. 采用BET, XRD, EPR和TPR等手段对催化剂进行了表征, 结果表明, 溶胶-凝胶法可制备高分散铜催化剂, 该催化剂中存在孤立的不可还原的Cu2+和可还原的Cu2+簇两种物种. 浸渍法制备的催化剂中含有可还原的Cu2+簇物种. 反应活性测试结果表明, 不可还原的孤立Cu2+呈高分散状态, 但其对仲丁醇脱氢反应没有活性; 可还原的Cu2+在反应过程中被还原成Cu0, Cu0是反应稳定脱氢的活性中心.  相似文献   

3.
The potential energy surface of O(1D) + CH3CH2F reaction has been studied using QCISD(T)/6-311++G(d,p)//MP2/6-311G(d,p) method. The calculations reveal an insertion–elimination reaction mechanism of the title reaction. The insertion process has two possibilities: one is the O(1D) atom inserting into C–F bond of CH3CH2F produces one energy-rich intermediate CH3CH2OF and another is the O(1D) atom inserting into one of the C–H bonds of CH3CH2F produces two energy-rich intermediates, IM1 and IM2. The three intermediates subsequently decompose to various products. The calculations of the branching ratios of various products formed though the three intermediates have been carried out using RRKM theory at the collision energies of 0, 5, 10, 15, 20, 25 and 30 kcal/mol. CH3CH2O is the main decomposition product of CH3CH2OF. HF and CH3 are the main decomposition products for IM1; CH2OH is the main decomposition product for IM2. Since IM1 is more stable and more likely to form than CH3CH2OF and IM2, HF and CH3 are probably the main products of the O(1D) + CH3CH2F reaction. Our computational results can give insight to reaction mechanism and provide probable explanations for future experiments.  相似文献   

4.
A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N2O chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10)<CZA(CP)<CZA(20)<CZA(30); while the selectivity of MEK was increased in the order of CZA(CP)<CZA(10)<CZA(20)<CZA(30).  相似文献   

5.
负载PtSn金属助剂的镁铝水滑石上的丙烷脱氢反应研究   总被引:2,自引:2,他引:0  
我们研究了以镁铝水滑石作为载体,利用水滑石层间阴离子的可交换性,负载活性金属铂和锡的丙烷脱氢反应.在镁铝水滑石载体中加入Ga能够影响丙烷脱氢活性,当镓的含量为1%时催化剂丙烷脱氢反应活性最高,反应初始时,丙烷转化率为46.5%,反应2 h后,丙烷转化率仍有37.5%.当以Mg(Ga)(Al)O-1%为载体时,考察了不同H_2/C_3H_8摩尔比对丙烷脱氢活性的影响,结果表明当H_2/C_3H_8摩尔比为0.5∶1时,丙烷脱氢反应具有最佳的反应活性,即当在原料气中加入H_2时,能够使得丙烷脱氢的转化率大幅度提升,且选择性也有所提升.烷烃脱氢是一个吸热反应,同时考察了温度对烷烃脱氢反应性能影响,结果表明温度越高,丙烷脱氢反应具有更高的转化率.对催化剂进行长时间寿命实验考察,发现当反应经过40 h后,丙烷的转化率仍有23.5%,说明Pt Sn-Mg(Ga)(Al)O-1%催化剂具有较好的稳定性.  相似文献   

6.
The texture of Cr2O3-K2O/Al2O3catalysts containing oxides of rare earth elements (REE) was studied. The catalysts are used for the synthesis of 2-methylthiophene by the reaction of H2S with n-pentane or piperilene. The heterocyclization of n-pentane is a consecutive reaction involving a step of dehydrogenation of initial hydrocarbon. At this step the texture of the catalyst affects the yield of 2-methylthiophene. The yield of 2-methylthiophene obtained from piperilene and I2S is independent of the catalyst texture.  相似文献   

7.
The racemization of R-(-)-2-amino-1-butanol in a reaction using Co/γ-Al2O3 catalysts and catalysts modified by Mg or Ca was investigated in this paper. Complete racemization was achieved with a yield of over 83% at using the Mg modified Co/γ-Al2O3 catalyst under optimized reaction conditions of 170°C and 2.5 MPa of H2. The catalysts were thoroughly characterized by XRD, XPS, TPR, SEM and TEM. The addition of Mg and Ca may be advantageous for dispersing and stabilizing the active species of the Co/γ-Al2O3 catalyst, protecting from sintering, significantly improving its catalytic activity and stability.  相似文献   

8.
La-SO42-/SBA-15 was synthesized with various amounts of lanthanum via incipient-wetness impregnation. Characterization was done by X-ray diffraction(XRD), transmission electron micrographs(TEM), nitrogen adsorption, FTIR spectroscopic analysis, thermogravimetric analysis, and the total amount of acidity of catalyst was estimated by TPD of NH3. The results indicate that lanthanum has been incorporated into SBA-15 molecular sieve. The prepared materials(La-SO42-/SBA-15) keep the highly ordered mesoporous two-dimensional hexagonal structure and do not change the mesoporous channel structure of the support SBA-15. The catalyst showed best catalytic activity in the synthesis of n-butyl acetate. The optimum conditions of the esterification by orthogonal experiments were studied: the molar ratio of n-butanol to acetic acid 1:1.2, the amount of catalyst 7.5%, reaction time 80 min. The yield of n-butyl acetate could reach 93.2% under the optimum conditions. The catalyst was recyclable, cost effective and environmental friendly.  相似文献   

9.
1-Phenylethanol transformation over several oxide catalysts (MgO, MgO-B2O3, ZrO2, AlPO4-SiO2 and a Spanish sepiolite of Vallecas) was used as test reaction to determine their acid-basic properties. Different kinds of surface sites are proposed for dehydration and dehydrogenation processes. Thus, strong basic sites are related to the dehydrogenation process while both weak acid and basic sites are responsible for that of dehydration.  相似文献   

10.
Metal oxide-modified ZnO /SiO2 catalysts were studied for the cyclo-dehydrogenation of ethylenediamine with propyleneglycol to 2-methylpyrazine at 633 K. The ZnO/SiO2 catalyst showed fairly good ethylenediamine conversion and quantitative propyleneglycol conversion with about 60 mol% of 2-methylpyrazine selectivity, which is due to the existence of large amount of unconverted intermediate, 2-methylpiperazine. Metal oxide (CuO, NiO, Co3O4)-modified ZnO/SiO2 catalysts were prepared to facilitate the dehydrogenation of 2-methylpiperazine to 2-methylpyrazine. About 82 mol% of 2-methylpyrazine selectivity was achieved on CuO and Co3O4 modified ZnO/SiO2 catalysts, with significant increases of pyrazine selectivity. The catalytic properties of the metal oxidemodified ZnO/SiO2 catalysts, pretreated with hydrogen gas as in the cyclo-dehydrogenation, were compared using the well-known probe reaction, the dehydrogenation/ dehydration of cyclohexanol to cyclohexanone or phenol/cyclohexene. The selectivities of pyrazine in the cyclo-dehydrogenation on the metal oxide-modified ZnO/SiO2 catalysts were correlated with the phenol selectivities of the probe reaction. It is proposed that the metallic site of catalyst is responsible for the formation of pyrazine from ethylenediamine dimerization. The improved 2-methylpyrazine yield on CuO/ZnO/SiO2 catalyst was explained by the proper adjustment of catalytic properties, which could be differentiated by the phenol selectivity in the cyclohexanol probe reaction. Thus, the large enhancement of 2-methylpiperazine dehydrogenation to 2-methylpyrazine and the suppression of excess pyrazine formation are supposed to occur on the metallic Cu formed in situ during the reaction during the cyclo-dehydrogenation of ethylenediamine with propyleneglycol.  相似文献   

11.
The effect of the type of the support and the amount of V2O5 loading on the activity of V2O5/γ-Al2O3 catalyst for the dehydrogenation of isobutane have been investigated. Based on the experimental results of TPR, XRD and ESR spectroscopy, it is suggested that there are strong interactions between vanadia and carrier and that the V4+ species on the surface is the active site of V2O5/γ-Al2O3 for this reaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
以PPh2C2H4-Si(OEt)3和(EtO)3Si-C2H4-Si(OEt)3为混合硅源,在表面活性剂作用下共缩聚制备有序介孔有机硅杂化材料,再络合Pd(Ⅱ)离子得到固载化Pd(Ⅱ)非均相催化剂.在水介质Barbier反应中,所制备的Pd(Ⅱ)-PPh2-PMO(Et)具有与均相Pd(PPh3)2Cl2催化剂相当的催化活性,主要归因于高比表面积、有序介孔结构,有利于提高Pd(Ⅱ)活性位分散度,减少传质阻力,同时乙基修饰孔壁增强表面疏水性,有利于有机分子在孔道内的扩散和活性位上的吸附,导致高催化活性,而且可重复使用,显示了良好的工业应用前景.  相似文献   

13.
Catalytic activity and aromatic selectivity of n‐butane transformation were studied over various MFI type zeolites. From the data obtained, a reaction mechanism is suggested for different catalyst systems. It is visualized that in gallium doped catalysts, Ga3+ directly takes part both in cracking and dehydrogenation. The [Ga CH3]2+ and [GaH]2+ species formed during cracking and dehydrogenation require protonic sites for regeneration of Ga3+ species. An alternative mechanism was suggested for dehydrogenation and cracking by Ga3+ without the involvement of protonic sites. However a protonic site would be required for aromatization. In case of gallosilicates a one step mechanism is suggested for cracking and dehydrogenation reaction which does not require the presence of protonic sites in the catalyst system.  相似文献   

14.
The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4→TiC2H2 + (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm−1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1-2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two distinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2 +(2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H44IC→IM1-4B24,2ISC→IM1-2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2 +(2A2)+H2. Supported by ‘Qinglan’ Talent Engineering Funds by Tianshui Normal University.  相似文献   

15.
采用银修饰介孔磷钨酸/二氧化硅(mesoporous HPW/SiO2)催化剂,并研究了其在模拟柴油和真实柴油氧化脱硫反应中的催化性能。通过银修饰介孔HPW/SiO2,结合银离子对有机硫化物的选择吸附性和HPW对有机硫化物的催化氧化活性,以达到选择氧化脱硫的目的。模拟柴油分别采用石油醚、苯、1-辛烯和二苯并噻吩配制,当银离子与HPW的摩尔比为2时,催化剂具有最高的选择催化氧化活性。采用N2 吸附-脱附、XRD、UV-vis和EDS表征了银修饰的介孔HPW/SiO2催化剂,结果表明,银物种分散均匀且以Ag+形式存在。真实柴油的脱硫研究表明,相比介孔HPW/SiO2催化剂,修饰的催化剂介孔Ag2-HPW/SiO2脱硫率提高了4.6%,初始硫含量为1800×10-6的直馏柴油能被脱除至228×10-6,脱硫率为87.3%。介孔Ag2-HPW/SiO2催化剂具有良好的再生性能,经再生处理后,Ag的损失量极少,其三次脱硫率达到84.8%。  相似文献   

16.
CrOx/SiO2催化剂上丙烷在CO2气氛中脱氢反应的研究   总被引:2,自引:0,他引:2  
采用XRD、UV-vis DRS、ESR和微分吸附量热等技术,考察了铬担载量分别为2.5、5和10wt%的CrOx/SiO2催化剂的结构、表面性质和氧化还原性能。结果表明,催化剂表面上存在多种Cr的氧化态和聚集形式。随着Cr担载量从2.5wt%到10wt%的逐渐增大,催化剂表面占主导地位的Cr物种由CrO3单体转为多聚CrO3和Cr2O3晶相。在CO2气氛中催化剂对丙烷转化率和丙烯选择性的大小顺序为2.5wt%CrOx/SiO2>5wt%CrOx/SiO2>10wt%CrOx/SiO2,反应过程中的原位ESR和UV-visDRS测定结果表明,催化剂表面的反应活性中心为Cr5+,Cr5+可由催化剂预处理过程中Cr3+的氧化及丙烷反应过程中CrO3单体的还原产生,在反应中CO2可使Cr3+重新氧化为Cr5+.  相似文献   

17.
Abstract

Tunisian industrial phosphoric acid H3PO4 was supported on silica gel SiO2 (SIPA) to catalyze the hydrolysis reaction of aqueous alkaline sodium borohydride (NaBH4). The SiO2 was produced from purified quartz sand using alkali fusion-acidification chemical process. The BET surface area results indicate that the prepared silica gel could reach a specific surface area up to 585 m2/g. The addition of PO3H2 functional groups resulted in an increase of surface acidity of SiO2 catalyst as shown by FT-IR and DTA-DTG spectra. The total acidity of SIPA catalyst was determined by titration to be 2.8?mmol H+/g. SEM/EDS maps reveal the distribution of heavy metals on the silica surface. The effect of supported PO3H2 functional groups and heavy metals on the NaBH4 hydrolysis reaction was studied for different ratios of SIPA catalyst to NaBH4. The sample 12SIPA/NaBH4 leads to a very high hydrogen generation rate (up to 90%). The activation energy of hydrogen generation by NaBH4 hydrolysis was 25.7?kJ mol?1.  相似文献   

18.
Steam-reforming reactions of methanol over NiO/Al2O3 and CuO/ZnO have been investigated. Over the nickel catalyst, the reaction rate is of zero kinetic order with respect to either methanol or steam, and the activation energy is 12.4 kJmol?1, whereas with copper catalyst, the rate is expressed according to the literature as kPa/(1 + KaPa + Kb+Pb) in which “a” and “b” are methanol and steam, respectively. The rate-controlling step of the reaction is assigned to the dissociation of O-H bond with dehydrogenation of C-H bond proceed rapidly to form carbon oxides. With copper catalyst the intrinsic participation of a water molecule during the dehydrogenation of C-H bond leads to the formation of carbon dioxide. With nickel catalyst, the dehydrogenation proceed more rapidly than the migration of a water molecule from an alumina site to a nickel site and causes almost exclusively the formation of carbon monoxide and hydrogen at a lower reaction temperature.  相似文献   

19.
通过柠檬酸辅助固相研磨法制备铜基催化剂,采用XRD、TPR、TG-DSC、SEM、BET、TEM、XPS、CO_2-TPD等手段对催化剂性能进行表征.结果表明室温固相研磨的前驱体在惰性气体N_2中焙烧使体系中的CuO绝大部分被原位还原成Cu~0,不需外加H_2还原,直接制得了C/I-Cu/ZnO催化剂,催化剂具有中孔.利用高压固定床连续反应装置对催化剂活性进行了评价,结果表明,柠檬酸用量、前驱体焙烧温度、焙烧升温速率等条件对催化剂活性产生影响,当C_6H_8O_7/(Cu+Zn)摩尔比为1.2/1并Cu/Zn摩尔比1/1,前驱体在N_2中以3 K·min~(-1)升温速率于623 K焙烧3 h,制得的C/I-Cu/ZnO催化剂比表面积最大,Cu~0粒径最小,在CO_2加氢合成甲醇反应中表现出最佳的活性,CO_2转化率、甲醇选择性和产率分别达到了28.28%、74.29%和21.01%.与外加H_2还原的C/H-Cu/ZnO催化剂相比,原位还原C/I-Cu/ZnO催化剂比表面积较大,Cu~0的粒径较小,活性较高.  相似文献   

20.
The hydration reaction of ethylene, C2H4+H2O → C2H5OH, catalyzed by oxoacids (H3PO4, H2SO4, and HClO4) and metal cations (B3+, Al3+, Sc3+, Ga3+, La3+, Be2+, Mg2+, Ca2+, Zn2+, and Sr2+) are studied systematically by density functional theory with a BLYP functional. The reaction profiles of the main reaction and some side reactions, such as ester formation, dimerization of ethylene, and dehydrogenation of ethanol, have been determined with a variety of catalysts. In each case, the intermediate states, the transition states, and their energetics are calculated. Metal cations react more efficiently for the main reaction than oxoacids, but they also make the dehydrogenation reaction active. While the dimerization reaction is strongly affected by the acidity of the catalyst, both the acidity and basicity of the catalyst are important for the dehydrogenation reaction. Efficient formation of ethanol from ethylene over a catalyst is suggested. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1292–1304, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号