首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various CuO/SiO2 catalysts were prepared and characterized by XRD, surface area and metal area measurements. While dehydrogenation activity for cyclohexanol was observed at 473–573 K on reduced catalysts, it was observed only at 573 K on the unreduced catalyst.IICT Communication No: 3261  相似文献   

2.
Carbon and fluorocarbon fibers were used as carriers for the preparation of copper catalysts from copper oxalate as precursor. The catalytic properties of catalyst were studied in the reaction of the dehydrogenation of C2-C4 alcohols by the pulsed microcatalytic method. The effect of the copper content in the catalyst, the reaction temperature on the degree of conversion, and the relation of the reaction channels were studied. The electron microphotographs were obtained, specific surfaces were measured, and X-ray pictures and infrared spectra of catalysts were taken. The activity of the catalysts on the carbon and fluorocarbon fibers in the dehydration-dehydrogenation reactions of C2-C4 alcohols was comparatively estimated. It was shown that the selectivity of the products from the dehydrogenation reaction is higher for the Cu-fluorocarbon fiber catalyst.  相似文献   

3.
Porous CuO/SiO2 hollow microspheres were synthesized via an impregnation method using pure SiO2 hollow microspheres as the supporter, and Cu species as the functional material. The hollow microspheres were characterized by X-ray diffraction, BET surface area, temperature-programmed reduction, transmission electron microscopy, and scanning electron microscopy. The catalytic activities of the CuO/SiO2 hollow microspheres were investigated via the removal of the total chemical oxygen demand (COD) in the oxidation of phenol solution with air as an oxidant. The influence of various reaction parameters such as the reaction temperature, the partial pressure of O2, and the initial pH of the solution were studied in detail. The coordination, dispersion and aggregation degree of copper species on porous materials play an important role for the COD removal of the phenol aqueous solution.  相似文献   

4.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

5.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

6.
The reaction of nonoxidative conversion of ethanol to acetaldehyde under conditions of thermal and microwave heating was studied on mixed ZnO—CuO—SiO2 oxide catalysts modified with additives of Nb and Ta carbides. It is suggested that microwave heating promotes the appearance of “hot” zones at points where the metal-rich nanoparticles of metal carbides intensively absorbing the microwave energy contact active sites of the mixed oxide catalyst ZnO—CuO—SiO2. Formation of these zones increases ethanol conversion and selectivity for acetaldehyde at moderate (<300°C) temperatures.  相似文献   

7.

Abstract  

The liquid-phase selective dehydrogenation of cyclohexanol has been investigated using two classes of catalyst containing either Cu2O or CuO on TiO2 under solar light in deaerated conditions at room temperature using acetonitrile medium in a batch reactor. The effect on dehydrogenation of three conditions, cyclohexanol concentration, copper loading on TiO2, and amount of catalyst, were investigated. The maximum yield of cyclohexanone obtained was 40%. The catalysts were characterized by XRD, UV–DRS, TEM, SEM–EDAX, and XPS. It was found that 1% (w/w) Cu2O/TiO2 was 100% selective for photocatalytic dehydrogenation of cyclohexanol.  相似文献   

8.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

9.
We have been exploring various new catalyst systems for the utilization of carbon dioxide as a soft oxidant in the catalytic dehydrogenation of ethylbenzene (EB) to styrene. The utilization of CO2 as a soft oxidant for the commercially important catalytic dehydrogenation of EB to styrene has received enormous attention recently due to its several attractive features. This review summarizes the results of our most recent findings on zirconia-based composite oxide catalyst systems exploited for this reaction. Under this systematic and comprehensive investigation various zirconia-based composite oxide catalysts namely, TiO2-ZrO2, MnO2-ZrO2, CeO2-ZrO2, K2O/TiO2-ZrO2, B2O3/TiO2-ZrO2 and CeO2-ZrO2/SBA-15 have been synthesized, characterized by various techniques and evaluated for the title reaction. Most of these composite oxide catalysts were found to exhibit very interesting physicochemical characteristics and exceptionally better catalytic properties for this reaction. As revealed by characterization results, a large number of acid–base sites with moderate strength are essential for a high conversion and product selectivity of this reaction with CO2 as the soft oxidant.  相似文献   

10.
《印度化学会志》2021,98(7):100090
Solvent-free carbonylation of glycerol with urea to glycerol carbonate (GC) was achieved over heterogeneous Cu–Zn mixed oxide catalyst. Cu–Zn catalysts with different ratios of Cu:Zn were prepared using co-precipitation (CP) and oxalate gel (OG) methods. As compared to CuO–ZnO(2:1) catalyst prepared by oxalate gel (OG) method, much higher conversion of glycerol and highest selectivity towards glycerol carbonate (GC) was achieved with CuO–ZnO_CP(2:1) catalyst. Physicochemical properties of prepared catalysts were investigated by using XRD, FT-IR, BET, TPD of CO2 and NH3 and TEM techniques. The effect of stoichiometric ratio of Cu/Zn, calcination temperature of CuO–ZnO catalysts and effect of reaction parameters such as molar ratio of substrates, time and temperature on glycerol conversion to GC were critically studied. Cu/Zn of 2:1 ratio, glycerol–urea 1:1 molar ratio, 145 ​°C reaction temperatures were found to be optimized reaction conditions to achieve highest glycerol conversion of 86% and complete selectivity towards GC. The continuous expel of NH3 from reaction the mixture avoided formation of ammonia complex with CuO–ZnO catalyst. As a result of this, CuO–ZnO catalyst could be recycled up to three times without losing its initial activity.  相似文献   

11.
Controllable crystallite size of CuO in CuO/ZnO/meso-SiO2 catalysts was successfully realized by impregnation method using mesoporous silica with different pore diameters as support. Characterization techniques such as N2 adsorption/desorption, X-ray diffraction, H2 temperature-programmed reduction, and potentiometric titration were employed to investigate the influences of pore size on textural properties, crystalline phases, reducibility, and acidity. Catalytic evaluation of synthesis of 2-methylpyrazine was carried out at 380 °C under atmospheric conditions. The best catalytic performance was achieved over catalyst CZ/S1 supported on the carrier with smallest pore size.  相似文献   

12.
以CuO/SiO2为催化剂, 在常压固定床反应器上实现了1,4-丁二醇脱氢反应与顺丁烯二酸二甲酯加氢反应的耦合, 制备一种重要的精细化学品γ-丁内酯. 和传统的反应过程相比, 耦合反应提高了顺丁烯二酸二甲酯加氢和1,4-丁二醇脱氢活性. 在优选的反应条件下, 原料的转化率可达100%, γ-丁内酯的选择性可达98%. CuO的最佳负载量为w=21%附近, 和单层分散阈值计算结果基本符合. XRD与TPR表征结果与单层分散阈值计算结果综合表明: 催化剂的活性组分为高分散的Cu0, 负载量过高使得催化剂聚集态铜晶体的比例和粒度都大大增加.  相似文献   

13.
Phenol gets adsorbed on Al2O3 and mineralizes under UV light in the presence of dissolved O2. The degradation exhibits first-order kinetics and its rate increases linearly with the light intensity and decreases with pH. 2,4-Diphenoxycyclohexanone and 2,6-diphenoxycyclohex-3-ene-1-ol are the intermediates of the reaction. While particulate TiO2, ZnO, ZnS, Fe2O3, CuO, CdO, and Nb2O5 individually photocatalyze the degradation, each semiconductor exhibits synergistic photocatalysis, an enhanced photodegradation, when present along with Al2O3, indicating electron abstraction by illuminated semiconductors from the phenol adsorbed on Al2O3.  相似文献   

14.
A series of BiMoFe0.65P x oxide catalysts with varying phosphorous contents from 0.0 to 0.6 mol ratio were prepared by a co-precipitation method, and oxidative dehydrogenation (ODH) was carried out to produce 1,3-butadiene (BD) from n-butenes. The physico-chemical properties of the oxide catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 sorption, and NH3 and 1-butene temperature-programmed desorption (TPD). Among the catalysts studied here, BiMoFe0.65P0.1 oxide catalyst showed the highest conversion and selectivity to BD. From the result of 1-butene TPD, the higher catalytic activity is related to the amount of weakly bounded intermediate and the desorbing temperature of strongly bounded intermediates. Also, the higher catalytic activity likely originates from the acidity of the BiMoFe0.65P0.1 oxide catalyst; its acidity was higher than that of phosphorous-free oxide catalyst and further contained other oxide catalysts. BiMoFe0.65P0.1 oxide catalyst is stable and no significant deactivation for 100 h ODH reaction was shown.  相似文献   

15.
The Pt0.5Со0.5/SiO2 catalyst has been prepared by the decomposition of a [Pt(NH3)4][Co(C2O4)2(H2O)2]. 2H2O binary complex salt supported in the pores of SiO2 pellets. It has been shown by a complex of physical and chemical methods that Pt0.5Со0.5/SiO2 contains alloy nanoparticles with an average composition Pt0.5Co0.5. The catalytic properties of Pt0.5Со0.5/SiO2 are studied in the preferential oxidation of СО in the reaction mixtures with various compositions. It was found that Pt0.5Со0.5/SiO2 has a high selectivity and makes it possible to decrease the outlet concentration of CO to a level of <10 ppm, and the presence of СО2 and/or Н2О in the reaction mixture almost does not affect its catalytic properties. The structure of the catalyst is stable under the conditions of preferential CO oxidation.  相似文献   

16.
FePО4/SiO2 supported catalysts with a different content of iron phosphate are prepared. The properties of the catalyst are changed by the introduction of alkali metal compounds (Na or Cs) on its surface. The samples obtained are characterized by X-ray diffraction, low-temperature nitrogen adsorption, temperatureprogrammed reduction by hydrogen, and temperature-programmed desorption of ammonia. The catalytic properties are investigated in the reaction of gas-phase propylene glycol oxidation. It is shown that the selectivity of methylglyoxal formation on the unmodified catalysts is determined by the state of the supported active component and by its reduction–oxidation ability under the action of a reaction mixture.  相似文献   

17.
Sumitomo Chemical has developed a low energy consuming and green process for the catalytic oxidation of HCl to Cl2, especially when compared with the electrolysis process. The RuO2/rutile-TiO2 catalyst has high catalytic activity and thermal stability due to ultra-fine RuO2 crystallites that cover the surface of the TiO2 primary particles with strong interaction. In addition, the silica modified RuO2/rutile-TiO2 catalyst shows higher thermal stability by preventing the RuO2 sintering due to using dispersed SiO2 particles. With these catalysts, high reaction rates required for industrial applications are achieved, even at low temperatures.  相似文献   

18.
Catalytic performance of gallia-supported iridium catalysts in the reaction of selective hydrogenation of crotonaldehyde in the gas phase was studied and compared to that of platinum and ruthenium catalysts. The best catalytic properties in terms of the selectivity to crotyl alcohol are shown by 5 wt % Pt/α-Ga2O3 and 5 wt % Ir/α-Ga2O3 catalysts prepared from nonchlorine precursors: Pt(acac)2 and Ir(acac)3, but for the 5 wt % Pt/α-Ga2O3 a very high selectivity of 75% at the high conversion (ca. 60%) is observed. A high selectivity of galia-supported iridium and platinum catalysts was explained by the surface reducibility of gallium oxide leading to covering (decoration) of platinum and iridium by gallium suboxides and the promoting effect of gallium.  相似文献   

19.
The effect of the reduction conditions on the physicochemical and catalytic properties of Ni2P/SiO2 catalysts was studied. The catalysts were prepared by impregnating silica with a solution of nickel acetate and diammonium hydrogen phosphate followed by drying, calcination, and temperature-programmed reduction. The Ni2P/SiO2 catalysts were reduced prior to hydrodeoxygenation (HDO) of methyl palmitate in the catalytic reactor (in situ) at temperatures of 550, 600, and 650 °С for 3 h and at 600 °С for 1 and 6 h. The reduction temperature and reduction time were shown to affect the conversion of methyl palmitate, and the optimal reduction conditions of the Ni2P/SiO2 catalysts were found. The Ni2P/SiO2 catalyst synthesized according to a widely used preparation method, including steps of passivation and rereduction at 450 °С in addition to the reduction step, is inferior in activity to the samples prepared in situ.  相似文献   

20.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号