首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
The method of feed-in energy on disc brake squeal   总被引:1,自引:0,他引:1  
Brake squeal is studied in this paper by feed-in energy analysis. Based on the brake closed-loop coupling model, a calculation method of feed-in energy for squeal mode is derived. Result of the feed-in energy indicates squeal tendency of the brake system, while formula for calculating it discloses the relation among brake squeal phenomenon and structural parameters, such as frictional coefficient, geometric shape of brake pads, elastic modulus of frictional material, substructure modal shape, etc. The method also helps to analyze the effectiveness of various structural modification schemes attempted to eliminate the squeal noise. Finally, this method is illustrated by application to a typical squealing disc brake.  相似文献   

3.
Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the stationary nonlinear system.The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are performed and the results are compared with a classical variable order solver integration algorithm.Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate the effects of the friction coefficient, piston pressure, nonlinear stiffness and structural damping.  相似文献   

4.
Friction induced vibrations in automotive brakes is recognized as a major problem in industry. Squeal is a difficult subject because of its unpredictability caused by a not completely understood sensitivity to variation of the system parameters. In the literature several analytical and numerical studies deal with the relationship between damping and system propensity to have instability. These studies highlight the existence of a nonintuitive effect of damping distribution on modal coupling that gives rise to the unstable vibrations. The complexity of commercial brakes and the difficulties to identify the values of modal damping in brake assemblies lead to the necessity to rely on experimental analysis using simplified test rigs. This paper presents an experimental investigation of the relationship between the distribution of modal damping and the propensity to develop squeal in a beam-on-disk setup, which reliably reproduces squeal events with easy control and measurement of the damping of the disk and the beam, respectively. The experiments highlight the key role played by the modal damping distribution on squeal: A nonuniform repartition of the modal damping causes an increase of the squeal propensity.  相似文献   

5.
Automotive disc brake squeal   总被引:3,自引:0,他引:3  
Disc brake squeal remains an elusive problem in the automotive industry. Since the early 20th century, many investigators have examined the problem with experimental, analytical, and computational techniques, but there is as yet no method to completely suppress disc brake squeal. This paper provides a comprehensive review and bibliography of works on disc brake squeal. In an effort to make this review accessible to a large audience, background sections on vibrations, contact and disc brake systems are also included.  相似文献   

6.
Brake squeal, which usually falls in the frequency range between 1 and 16 kHz, has been one of the most difficult concerns associated with automotive brake systems since their inception. It causes customer dissatisfaction and increases warranty costs. Although substantial research has been conducted into predicting and eliminating brake squeal since the 1930s, it is still rather difficult to predict its occurrence. In this paper, the characteristics and current difficulties encountered in tackling brake squeal are first described. A review of the analytical, experimental and numerical methods used for the investigation of brake squeal is then given. Some of the challenges facing brake squeal research are outlined.  相似文献   

7.
Brake squeal is still a challenge for design engineers and scientists. Due to cost reasons for the avoidance of brake noise only passive measures are meaningful for a broad industrial range. Many countermeasures against squeal are based on the introduction of damping, for example by using shims. In the literature on the modeling of brake squeal, the structural properties of the brake disc are most often not considered. It has however been shown analytically and experimentally that the stiffness properties of the disc are important and that splitting of double modes of the disc has a stabilizing effect. This knowledge can be used for structural optimization of brake rotors. The goal of this paper is to exploit the potential and to discuss some mathematical difficulties. Furthermore, experimental evidence for the relation of rotor asymmetry and squeal is given.  相似文献   

8.
Yi Dai 《Applied Acoustics》2008,69(3):196-214
An enhanced dynamic finite element (FE) model with friction coupling is applied to analyze the design of disc brake pad structure for squeal noise reduction. The FE model is built-up from the individual brake component representations. Its interfacial structural connections and boundary conditions are determined by correlating to a set of measured frequency response functions using a spectral-based assurance criterion. The proposed friction coupling formulation produces an asymmetric system stiffness matrix that yields a set of complex conjugate eigenvalues. The analysis shows that eigenvalues possessing positive real parts tend to produce unstable modes with the propensity towards the generation of squeal noise. Using a proposed lumped parameter model and eigenvalue sensitivity study, beneficial pad design changes can be identified and implemented in the detailed FE model to determine the potential improvements in the dynamic stability of the system. Also, a selected set of parametric studies is performed to evaluate numerous design concepts using the proposed dynamic FE model. The best pad design attained, which produces the least amount of squeal response, is finally validated by comparison to a set of actual vehicle test results.  相似文献   

9.
Analysis of disc brake squeal using the complex eigenvalue method   总被引:1,自引:0,他引:1  
A new functionality of ABAQUS/Standard, which allows for a nonlinear analysis prior to a complex eigenvalue extraction in order to study the stability of brake systems, is used to analyse disc brake squeal. An attempt is made to investigate the effects of system parameters, such as the hydraulic pressure, the rotational velocity of the disc, the friction coefficient of the contact interactions between the pads and the disc, the stiffness of the disc, and the stiffness of the back plates of the pads, on the disc squeal. The simulation results show that significant pad bending vibration may be responsible for the disc brake squeal. The squeal can be reduced by decreasing the friction coefficient, increasing the stiffness of the disc, using damping material on the back plates of the pads, and modifying the shape of the brake pads.  相似文献   

10.
This paper presents an experimental investigation into the application of “dither” control for the active control and suppression of automobile disc brake squeal. Dither control is characterized by the application of a control effort at a frequency higher than the disturbance to be controlled. In the particular system considered here, a vibro-acoustic analysis of a disc brake system during squeal determined the acoustic squeal signature to be emanating from the brake rotor. This squeal was eliminated, and could even be prevented from occurring, through the application of a harmonic force with a frequency higher than the squeal frequency. The harmonic force was generated by a stack of piezoelectric elements placed within the brake's caliper piston. The harmonic force represented a small variation about the mean clamping force exerted by the brake upon the rotor. The high-frequency vibration in the brake system due to the action of the control system was not heard if an ultrasonic control frequency was used. More importantly, the active control system is shown to be able to prevent squeal from even occurring. This gives rise to a possible active control system integrated into the brake system of automobiles to prevent squeal.  相似文献   

11.
12.
Many fundamental studies have been conducted to explain the occurrence of squeal in disc and drum brake systems. The elimination of brake squeal, however, still remains a challenging area of research. Here, a numerical modeling approach is developed for investigating the onset of squeal in a drum brake system. The brake system model is based on the modal information extracted from finite element models for individual brake components. The component models of drum and shoes are coupled by the shoe lining material which is modeled as springs located at the centroids of discretized drum and shoe interface elements. The developed multi degree of freedom coupled brake system model is a linear non-self-adjoint system. Its vibrational characteristics are determined by a complex eigenvalue analysis. The study shows that both the frequency separation between two system modes due to static coupling and their associated mode shapes play an important role in mode merging. Mode merging and veering are identified as two important features of modes exhibiting strong interactions, and those modes are likely candidates that lead to coupled-mode instability. Techniques are developed for a parameter sensitivity analysis with respect to lining stiffness and the stiffness of the brake actuation system. The influence of lining friction coefficient on the propensity to squeal is also discussed.  相似文献   

13.
Brake squeal noise has been under investigation by automotive manufacturers for decades due to consistent customer complaints and high warranty costs. J.D. Power surveys consistently show brake noise as being one of the most critical vehicle quality measurements. Furthermore, the development of methods to predict noise occurrence during the design of a brake system has been the target of many researchers in recent years.This paper summarizes the application of complex eigenvalue analysis in a finite element model of a commercial brake system. The effect of the operational parameters (friction coefficient, braking pressure and brake temperature) and wear on the dynamic stability of the brake system is examined. After identifying unstable frequencies and the behavior of the brake system under different conditions, the performance of some control methods are tested. Changes in material properties and the application of brake noise insulators are presented and their effects discussed.The results show that the effect of brake temperature changes the coupling mechanisms between rotor and pad, which in some cases can be useful in order to reduce the instabilities and generated noise. Wear is an operational condition that has an strong effect on the system instability, since stiffness properties of brake pads are influenced by the changes on geometry and on the friction material, leading to high-frequency noise generation when the system is in the end of its lifetime. Application of brake insulators requires a detailed investigation of the system since, for some cases, an increase on the system damping does not balance changes on stiffness, leading the system to instability and noise.  相似文献   

14.
We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.  相似文献   

15.
Numerous publications on the modeling of disk brake squeal can be found in the literature. Recent publications describe the onset of disk brake squeal as an instability of the trivial solution resulting from the non-conservative friction forces even for a constant friction coefficient. Therefore, a minimal model of disk brake squeal must contain at least two degrees of freedom. A literature review of minimal models shows that there is still a lack of a minimal model describing the basic behavior of disk brake squeal which can easily be associated to an automotive disk brake.Therefore, a new minimal model of a disk brake is introduced here, showing an obvious relation to the technical system. In this model, the vibration of the disk is taken into account, as it plays a dominant role in brake squeal. The model is analyzed with respect to its stability behavior, and consequences in using it in the optimization of disk brake systems are discussed.  相似文献   

16.
A distributed-parameter model of a disc brake is developed, which is used for simulation of friction-induced vibrations in the form of high-frequency squeal. The effect of different squeal generation mechanisms is investigated. The comparison of measured and calculated frequencies shows a good agreement and this study indicates that lining-deformation-induced modal coupling can act as a squeal generator in disc brakes.  相似文献   

17.
Two-dimensional (2D) lattices of diffusively coupled chaotic oscillators are studied. In previous work, it was shown that various cluster synchronization regimes exist when the oscillators are identical. Here, analytical and numerical studies allow us to conclude that these cluster synchronization regimes persist when the chaotic oscillators have slightly different parameters. In the analytical approach, the stability of almost-perfect synchronization regimes is proved via the Lyapunov function method for a wide class of systems, and the synchronization error is estimated. Examples include a 2D lattice of nonidentical Lorenz systems with scalar diffusive coupling. In the numerical study, it is shown that in lattices of Lorenz and Rossler systems the cluster synchronization regimes are stable and robust against up to 10%-15% parameter mismatch and against small noise.  相似文献   

18.
19.
The paper presents a series of brake performance measurements for a high speed Road Racing Supersport motorbike engine. A modular approach consisting in a progressive assembling of each component belonging to the intake and exhaust systems is used to investigate the influence of these components on volumetric efficiency through brake torque chassis dynamometer tests. In spite of the design effort that is usually made to keep the cylinder air intake independent of each other in this kind of engines, results showed a considerable acoustic coupling between the intake primary manifolds and the upstream components. Moreover, a good correspondence is found about intake and exhaust tuning regimes between experimental results and analytical relationships proposed in the literature. The presented results can also be interpreted as representative for the overall very high speed engines category (including MotoGP and F1 ones), being the air-breathing system layout mostly independent of engine technological level within this category.  相似文献   

20.
An uncertain optimization method for brake squeal reduction of vehicle disc brake system with interval parameters is presented in this paper. In the proposed method, the parameters of frictional coefficient, material properties and the thicknesses of wearing components are treated as uncertain parameters, which are described as interval variables. Attention is focused on the stability analysis of a brake system in squeal, and the stability of brake system is investigated via the complex eigenvalue analysis (CEA) method. The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of instability. The response surface method (RSM) is applied to approximate the implicit relationship between the unstable mode and the system parameters. A reliability-based optimization model for improving the stability of the vehicle disc brake system with interval parameters is constructed based on RSM, interval analysis and reliability analysis. The Genetic Algorithm is used to get the optimal values of design parameters from the optimization model. The stability analysis and optimization of a disc brake system are carried out, and the results show that brake squeal propensity can be reduced by using stiffer back plates. The proposed approach can be used to improve the stability of the vehicle disc brake system with uncertain parameters effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号