首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用聚氧乙烯硬脂酸酯(Brij78)和帕米膦酸二钠制备新型表面活性剂Pa-Brij78,以此为表面活性剂,聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)为油相,采用水包油包水的微乳液法制备载卵清蛋白(ovalbumin,OVA)的表面带有磷酸根的PLGA纳米粒,再用共沉淀法在其表面修饰一层磷酸钙,并装载寡核苷酸Cp G,形成一种核-壳结构的复合载药纳米粒Cp G/Ca P/PLGA(OVA).通过动态光散射粒度仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)对纳米粒进行表征,并测定OVA、Cp G的载药量、包封率.结果表明以Pa-Brij78为表面活性剂制备的PLGA(OVA)纳米粒确实能被磷酸钙修饰,粒径增大40~60 nm,表面变粗糙,XRD测得该磷酸钙层的主要存在形式为Ca3(PO4)2.OVA平均载药量为5%,包封率大于80%;Cp G平均载药量为0.47%,平均包封率为89.9%.  相似文献   

2.
壳聚糖修饰PLGA阳离子型纳米微球的制备与表征   总被引:7,自引:1,他引:6  
采用单乳化-溶剂(O/W)挥发技术制备表面带正电荷的壳聚糖(CHS)修饰聚乙/丙交酯(PLGA)纳米微球(PLGA/CHS), 通过正交试验优化了纳米微球的制备条件. 结果表明, 微球粒径可控制在150~200 nm内, 在pH=4时, 纳米微球表面电位最高为55 mV. 影响微球粒径的主要因素是聚合物的浓度, CHS的分子量和浓度以及介质的pH值对微球表面电位也有明显影响. 制备粒径较小而表面电位较高的PLGA/CHS纳米微球条件为: ρ(CHS)=3 mg/mL, ρ(PLGA)=10 mg/mL, Vo/Va=1/4. SEM图像显示经CHS修饰的PLGA的纳米微球形状规整, 荧光显微观察和XPS分析结果证实CHS包覆于微球表面.  相似文献   

3.
改良自乳化溶剂挥发法制备MePEG-PLGA纳米粒的研究   总被引:1,自引:0,他引:1  
对改良自乳化溶剂挥发法制备甲氧基封端的聚乙二阵-聚乳酸聚乙醇酸嵌段聚合物(MePEG—PL—GA)纳米粒的工艺进行优化,并对纳米粒子加以表征。以形态、粒径为指标,采用正交设计筛选出比较理想的制备工艺。以扫描电镜(SEM)和动态光散射粒度分析仪(DLS)对纳米粒的形态、大小和zeta电位进行研究。优化的制备方案:丙酮与乙醇体积比为3:3,MePEG—PLGA 30mg,聚乙烯醇(PVA)含量为3%,有机相与水相体积比为1:10。所得纳米粒为球形粒子,分布较均匀,平均粒径118.9nm。zeta电位为-1.7mV。改良自乳化溶剂挥发法适于MePEG—PLGA纳米粒子的制备。  相似文献   

4.
适配子修饰靶向PLGA纳米基因载体的构建   总被引:2,自引:0,他引:2  
化学合成了功能性三嵌段复合物乳酸乙醇酸共聚物-聚乙二醇-适配子(PLGA-PEG-Apt)。使用双乳化挥发法制备包裹DNA片段的PLGA-PEG-Apt新型纳米基因药物载体,表征检测显示:制备的纳米基因载体粒径为(225.2±8.1)nm,Zeta电位约(-35.5±-3.3)mV。扫描电子显微镜下纳米颗粒形态呈圆形,表面光滑,粒径分布较均匀。纳米粒子对TFO的包封率为(25.4±3.1)%(n=3),载药量为(1.34±0.16)μg/mg。体外释放实验研究结果显示持续释放过程达23 d,且PLGA-PEG-Apt纳米粒子呈突释之后的持续缓释过程。细胞水平实验结果显示,A10适配子修饰的纳米基因载体能更多进入靶向的前列腺癌细胞株,进而发挥其抗前列腺癌增殖的作用。该研究成功制备了靶向PLGA纳米基因载体,结果满意。  相似文献   

5.
合成了氨基聚酰胺-胺(PAMAM(G1.0))和酯基(PAMAM(G1.5))功能化的两种硅壳荧光纳米粒,通过透射电镜(TEM)、纳米粒度及动电位测定仪(zeta电势)、傅立叶红外光谱仪(FTIR)和热失重分析仪(TGA)进行表征;通过透射电镜(TEM)、共聚焦显微镜(CLSM)、细胞计数试剂盒(CCK-8)实验、流式细胞计数法评价两种硅壳荧光纳米粒进入9L细胞能力的大小、在细胞内的分布情况以及细胞毒性.TEM分析表明,修饰的硅壳纳米粒大小约为60 nm左右,pH=7.4,氨基功能化的纳米粒zeta电势为+19.08,酯基功能化的为-9.01;FTIR和TGA实验进一步证明两种纳米粒被氨基和酯基的功能化.TEM和CLSM结果表明纳米粒主要存在细胞浆中,且能被溶酶体吞噬.CCK-8结果显示两种纳米粒的浓度高达1 mg/mL时仍无明显的毒性作用,且有促细胞增殖作用.流式细胞计数结果表明,细胞摄取纳米粒呈浓度和时间依赖性,氨基比酯基修饰的纳米粒更易进入细胞.  相似文献   

6.
利用高碘酸钠(NaIO_4)氧化甘露聚糖(mannan,MN)得到了多醛基氧化甘露聚糖,再以帕米膦酸二钠(Pa)修饰,获得带有双磷酸根的甘露聚糖(Pa-MN).以此产物为基础,利用双磷酸根与钙离子的特异亲和作用通过共沉淀法制备了功能化磷酸钙(CAP)纳米粒,并研究了该纳米粒作为模型抗原鸡卵清蛋白(OVA)佐剂的免疫刺激效果.采用核磁共振、元素分析技术证明甘露聚糖被成功修饰.与伴刀豆球蛋白A(ConA)的特异性结合实验表明,合适的修饰度可保持甘露聚糖结构的完整性.通过动态光散射(DLS)粒度仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)表征发现,该功能化纳米粒平均粒径为130.4±1.9 nm,且分散性良好.Elisa实验测定血清中抗OVA的IgG水平,结果表明该功能化纳米粒具有良好的免疫刺激效果.  相似文献   

7.
利用与氨基选择性反应的荧光染料5-羧基荧光素琥珀酰亚胺酯(5-FAMSE)对豇豆花叶病毒(CPMV)表面的氨基进行修饰,制备了荧光功能化CPMV纳米粒(5-FAM/CPMV)。对其结构形态和单、双光子荧光进行了测试,用毛细管电泳对其表面特性进行了考察,并将其用于Hela细胞的双光子荧光成像。研究表明,目标纳米粒粒径均匀,仍具有天然CPMV的特性,能进入Hela细胞,在波长800nm激光激发下可以成功地用于肿瘤细胞的成像分析,可望用于肿瘤靶向双光子荧光细胞成像方面的研究。  相似文献   

8.
以牛血清白蛋白(BSA)为载体, 用去溶剂化-化学交联法制备白藜芦醇白蛋白纳米粒(RES-BSANP). 以原子力学显微镜(AFM)观察其形态, 用高效液相色谱法(HPLC)对制备的纳米微粒进行分析. 采用四甲基偶氮唑盐微量酶反应比色法(MTT)及流式细胞技术(FCM)比较RES-BSANP和RES对卵巢癌SKOV3细胞的抗增殖活性及对细胞周期和凋亡的影响. 结果表明, 获得的RES-BSANP纳米粒的平均粒径为400~500 nm, 表面光滑, 12 mg纳米粒中RES载药量为4.077 mg, 包封率33.97%, 24 h内的稳定性好, 水溶性较RES显著提高. 二者的抗肿瘤增殖作用呈剂量依赖性, 中高浓度组纳米粒组的抗增殖活性及凋亡细胞比率显著提高. 两种药物均使细胞周期阻滞于G0/G1+S期, 纳米组使进入S期细胞比率明显增加, 表明白藜芦醇白蛋白纳米粒在抗卵巢癌细胞增殖方面有广阔的应用前景.  相似文献   

9.
以普鲁兰多糖为主链, 通过乙酰化反应合成了疏水性的乙酰普鲁兰(PA), 然后以N,N′-二环己基碳二亚胺(DCC)为偶联剂, 4-二甲氨基吡啶(DMAP)为催化剂, 将叶酸与PA偶联(FPA); 采用1H NMR和X射线晶体衍射(XRD)等方法对产物结构进行了表征. 采用溶剂扩散法制备包载表阿霉素的PA和FPA纳米粒, 载药纳米粒形态为球形, 动态光散射粒径分析显示载药纳米粒粒径随载药量增加而增大. 透析法测定纳米粒中表阿霉素的体外释放表明, FPA纳米粒中药物释放速度快于PA纳米粒; 采用激光共聚焦显微镜观察PA/EPI及FPA/EPI纳米粒在KB细胞的摄取情况, 结果表明, FPA/EPI纳米粒进入细胞主要通过叶酸受体途径, 而PA/EPI纳米粒进入细胞与叶酸受体无关, 提示FPA将成为具有一定肿瘤靶向作用的新型载体.  相似文献   

10.
以可生物降解材料硬脂酸为载体, 以葛根总黄酮为模型药物, 采用乳化蒸发-低温固化法制备固体脂质纳米粒. 采用透射电镜研究载药纳米粒形态, 激光粒度分析仪测定其粒径, X射线衍射仪进行物相鉴别, 并对纳米粒的包封率及体外释药特性等进行了研究. 分析结果表明, 所制备硬脂酸固态脂质纳米粒为类球实体, 粒径分布比较均匀, 平均粒径为(263.82±3.6) nm, 包封率为(67.53±0.12)%. X射线衍射分析证明药物以分子或细小粒子分散于脂质骨架中. 体外释药研究结果表明, 纳米粒体外释药先快后慢, 12 h累积释药50%, 包封于降解材料骨架内的药物通过骨架溶蚀缓慢释放. 药物的体外释放符合Higuchi方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号