首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the context of a strong discontinuity approach, we propose a finite element formulation with an embedded displacement discontinuity. The basic assumption of the proposed approach is the additive split of the total displacement field in a continuous and a discontinuous part. An arbitrary crack splits the linear triangular finite element into two parts, namely a triangular and a quadrilateral part. The discontinuous part of the displacement field in the quadrilateral portion is approximated using linear shape functions. For these purposes, the quadrilateral portion is divided into two triangular parts which is in this way similar to the approach proposed in [5]. In contrast, the discretisation is different compared to formulations proposed in [1] and [3], where the discontinuous part of the displacement field is approximated using bilinear shape functions. The basic theory of the underlying finite element formulation and a cohesive interface model to simulate brittle fracture are presented. By means of representative numerical examples differences and similarities of the present formulation and the formulations proposed in [1] and [3] are highlighted. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In recent years the X-FEM based on the partition of unity method and the strong discontinuity approach (SDA) have shown to be powerful tools to model crack growth. Both methods model the crack surface by introducing additional d.o.f.. In the X-FEM the nodes in the mesh around a crack are globally enhanced with new d.o.f. while in in the SDA the new d.o.f. are commonly introduced as internal ones. Thus the jump displacement fields are constant across elements. Therefore the d.o.f. can be condensed on element level which results in jumps in the displacement field at element edges. In this contribution the strong discontinuity approach is used approximating the displacement jump linearly across the crack length similar as e.g. in [3]. New additional nodes of the cracked elements that lie on the element edges are introduced but are not considered as internal nodes but remain global. Thus crack path continuity is automatically given. These global d.o.f. approximate the discontinuous part of the displacement field. The sum of the aforementioned part and the continuous displacement field represent the total displacement field including a possible jump. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A finite element method to approximate the vibration modes of a structure enclosing an acoustic fluid is analyzed. The fluid is described by using simultaneously pressure and displacement potential variables, whereas displacement variables are used for the solid. A mathematical analysis of the continuous spectral problem is given. The problem is discretized on a simplicial mesh by using piecewise constant elements for the pressure and continuous piecewise linear finite elements for the other fields. Error estimates are settled for approximate eigenvalues and eigenfrequencies. Finally, implementation issues are discussed.

  相似文献   


4.
赵卫东 《计算数学》2000,22(1):83-96
1.引言多孔介质二相驱动问题的数学模型是偶合的非线性偏微分方程组的初边值问题.该问题可转化为压力方程和浓度方程[1-4].浓度方程一般是对流占优的对流扩散方程,它的对流速度依赖于比浓度方程的扩散系数大得多的Farcy速度.因此Darcy速度的求解精度直接影响着浓度的求解精度.为了提高速度的求解精度,70年代P.A.Raviat和J.M.Thomas提出混合有限元方法[5].J.DouglasJr,T.F.Russell,R.E.Ewing,M.F.Wheeler[1]-[4],[9],[12]袁…  相似文献   

5.
The objective of this paper is to propose a modified finite element called double quarter point finite element (DQPE) for modeling the singularity near the crack tip. Two techniques of evaluation (displacement correlation technique DCT and quarter point displacement technique QPDT) were used to estimate numerically the calibration factor for CN specimen. This study appears that the DQPE element is more effective than the QPE element. Not only that, but the length of the double quarter point finite element (DQPE) has little impact on the results. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed element.  相似文献   

6.
提出了一种简单而有效的平面弹性裂纹应力强度因子的边界元计算方法.该方法由Crouch与Starfield建立的常位移不连续单元和闫相桥最近提出的裂尖位移不连续单元构成A·D2在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界.算例(如单向拉伸无限大板中心裂纹、单向拉伸无限大板中圆孔与裂纹的作用)说明平面弹性裂纹应力强度因子的边界元计算方法是非常有效的.此外,还对双轴载荷作用下有限大板中方孔分支裂纹进行了分析.这一数值结果说明平面弹性裂纹应力强度因子的边界元计算方法对有限体中复杂裂纹的有效性,可以揭示双轴载荷及裂纹体几何对应力强度因子的影响.  相似文献   

7.
Charlotte Kuhn  Ralf Müller 《PAMM》2011,11(1):159-160
In the pioneering work by Griffith, it is assumed that a crack propagates, if this is energetically favorable. However, this original formulation requires a pre-existing initial crack. In order to bypass this deficiency of classical Griffith theory, Francfort and Marigo advocate a global variational criterion, where the total energy is minimized with respect to any admissible displacement field and crack set. Bourdin's regularized approximation of this variational formulation makes use of a continuous scalar field to indicate cracks. Based on this regularization a phase field fracture model is formulated. The crack field is assumed to follow a Ginzburg-Landau type evolution equation, and cracking is addressed as a phase transition problem. The coupled problem of mechanical balance equations and the evolution equation is solved using the finite element method combined with an implicit time integration scheme. The numerical solution naturally yields the crack evolution including crack propagation, kinking, branching and initiation without any additional criteria. In this work we study the driving mechanisms behind the crack evolution in the phase field fracture model and compare to the purely energetic considerations of the underlying variational formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
杨艳  冯民富  罗鲲 《计算数学》2010,32(3):233-246
基于Reissner-Mindlin板问题的间断Galerkin有限元逼近, 建立了一个对挠度空间和角位移空间取连续或间断元都适用的低阶有限元离散格式. 取剪切力空间为分片常数元, 挠度空间和角位移空间无论取间断元还是连续元, 格式都是一致稳定的, 并给出了H1范数估计及L2范数估计. 作为应用,对几类低阶有限元空间讨论. 结果表明, 该格式对常见的低阶有限元空间都适用, 并且若至少有一个元连续时, 该格式需要的空间比[1,2]中的都要简单.    相似文献   

9.
New advances in three-dimensional finite element modeling of crack propagation at finite strains are presented. The proposed numerical model is based on the Enhanced Assumed Strain concept. The enhanced part of the deformation gradient is associated with a displacement discontinuity. In contrast to previous works, a new, energy based criterion for crack propagation is presented. The necessity for a tracking algorithm for the crack path is avoided by using more than one discontinuity within each finite element. This leads to a strictly local formulation, i.e., no information about the neighboring elements are required. Further advantages of such a formulation are a symmetric tangent stiffness matrix and the reduction of locking effects. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In turbine blades of aero-engines typical defects are cracks due to high mechanical and thermal loads. The extended finite element method (XFEM) is used for simulations of fracture mechanics problems with cracks. Discontinuities in the displacement and temperature field are allowed and the crack opening displacement and crack tip stress field are reproduced accurately. Since crack closure and non-physical penetration of the crack surfaces may occur under certain load conditions, it becomes necessary to enforce the non-penetration condition for crack surfaces. This contact formulation is assumed to be frictionless. The node-to-segment approach proposed in [3] is extended to ten-node tetrahedral elements with quadratic shape functions. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Special finite elements including stress concentration effects of a hole   总被引:1,自引:0,他引:1  
Special finite elements are developed for efficient evaluation of stress concentration around a hole in complex structures. The complex variable formulation is used to derive a special set of stress functions which embody the stress concentration effects of a hole. The stress functions in combination with an independent displacement field assumed along the element boundary are used to construct the special elements with the hybrid displacement finite element method. Several numerical examples are presented to show that the used of special finite elements to model critical regions around a hole, together with conventional finite elements to model other regions away from the hole, is not only very convenient but also highly accurate.  相似文献   

12.
A radial tire is a very complex structure made from rubber elastomers and fiber–rubber composite materials. During its use, extension propagation of interface crack between belts can occur, which obviously affects its durability and life. In the present paper, a new mathematical model of extension propagation of interface crack in complex composite structures is presented. The model can reveal the extension propagation dependence of interface crack on the relative size of energy release rates at the left and right crack tips and on the interfacial material properties. The extension propagation model of interface crack, Irwin’s virtual crack close technique and the finite element analysis method are used together in simulating numerically the extension propagation process of a interface crack between belts of a radial tire. The present study numerical results show that the extension propagation model of interface crack proposed in this paper can more realistically characterize the complexity of the extension propagation process of interface crack in complex composite structures.  相似文献   

13.
Summary. A finite element method to approximate the vibration modes of a structure in contact with an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of an added mass formulation, which is one of the most usual procedures in engineering practice. Gravity waves on the free surface of the liquid are also considered in the model. Piecewise linear continuous elements are used to discretize the solid displacements, the variables to compute the added mass terms and the vertical displacement of the free surface, yielding a non conforming method for the spectral coupled problem. Error estimates are settled for approximate eigenfunctions and eigenfrequencies. Implementation issues are discussed and numerical experiments are reported. In particular the method is compared with other numerical scheme, based on a pure displacement formulation, which has been recently analyzed. Received August 31, 1998 / Published online July 12, 2000  相似文献   

14.
The proper modeling of state-of-the-art engineering materials requires a profound understanding of the nonlinear macroscopic material behavior. Especially for heterogeneous materials the effective macroscopic response is amongst others driven by damage effects and the inelastic material behavior of the individual constituents [1]. Since the macroscopic length scale of such materials is significantly larger than the fine-scale structure, a direct modeling of the local structure in a component model is not convenient. Multiscale techniques can be used to predict the effective material behavior. To this end, the authors developed a modeling technique based on representative volume elements (RVE) to predict the effective material behavior on different length scales. The extended finite element method (XFEM) is used to model discontinuities within the material structure independent of the underlying FE mesh. A dual enrichment strategy allows for the combined modeling of kinks (material interfaces) and jumps (cracks) within the displacement field [2]. The gradual degradation of the interface is thereby controlled by a cohesive zone model. In addition to interface failure, a non-local strain driven continuum damage model has been formulated to efficiently detect localization zones within the material phases. An integral formulation introduces a characteristic length scale and assures the convergence of the approach upon mesh refinement [3]. The proposed method allows for an efficient modeling of substantial failure mechanisms within a heterogeneous structure without the need of remeshing or element substitution. Due to the generality of the approach it can be used on different length scales. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this paper, a numerical approach for analyzing interacting multiple cracks in infinite linear elastic media is presented. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks, the original problem is divided into a homogeneous problem (the one without cracks) subjected to remote loads and a multiple crack problem in an unloaded body with applied tractions on the crack surfaces. Thus, the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements proposed recently by the author. Test examples are given to illustrate that the numerical approach is very accurate for analyzing interacting multiple cracks in an infinite linear elastic media under remote uniform stresses. In addition, the displacement discontinuity method with crack-tip elements is used to analyze a multiple crack problem in a finite plate. It is found that the boundary element method is also very accurate for investigating interacting multiple cracks in a finite plate. Specially, a generalization of Bueckner’s principle and the displacement discontinuity method with crack-tip elements are used to analyze multiple circular arc crack problems in infinite plate in tension (including: Two Collinear Circular Arc Cracks, Three Collinear Circular Arc Cracks, Two Parallel Circular Arc Cracks, Three Parallel Circular Arc Cracks and Two Circular Arc Cracks) in a plane elasticity plate. Many results are given.  相似文献   

16.
求解双材料裂纹结构全域应力场的扩展边界元法   总被引:3,自引:3,他引:0       下载免费PDF全文
在线弹性理论中,复合材料裂纹尖端具有多重应力奇异性,常规数值方法不易求解.该文建立的扩展边界元法(XBEM)对围绕尖端区域位移函数采用自尖端径向距离r的渐近级数展开式表达,其幅值系数作为基本未知量,而尖端外部区域采用常规边界元法离散方程.两方程联立求解可获得裂纹结构完整的位移和应力场.对两相材料裂纹结构尖端的两个材料域分别采用合理的应力特征对,然后对其进行计算,通过计算结果的对比分析,表明了扩展边界元法求解两相材料裂纹结构全域应力场的准确性和有效性.  相似文献   

17.
Arun Raina  Christian Linder 《PAMM》2011,11(1):171-172
In the current work, the physical phenomena of dynamic fracture of brittle materials involving crack growth, acceleration and consequent branching is simulated. The numerical modeling is based on the approach where the failure in the form of cracks or shear bands is modeled by a jump in the displacement field, the so called ‘strong discontinuity’. The finite element method is employed with this strong discontinuity approach where each finite element is capable of developing a strong discontinuity locally embedded into it. The focus in this work is on branching phenomena which is modeled by an adaptive refinement method by solving a new sub-boundary value problem represented by a finite element at the growing crack tip. The sub-boundary value problem is subjected to a certain kinematic constraint on the boundary in the form of a linear deformation constraint. An accurate resolution of the state of material at the branching crack tip is achieved which results in realistic dynamic fracture simulations. A comparison of resulting numerical simulations is provided with the experiment of dynamic fracture from the literature. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this work a powerful technique is described which allows the implicit coupling of partitioned solvers in fluid–structure interaction (FSI) problems. The flow under consideration is governed by the Navier–Stokes equations for incompressible viscous fluids and modeled with the finite volume method. The structure is represented by a finite element formulation. The method allows the use of a black box fluid and structural solver because it builds up a reduced order model of the fluid and structural problem during the coupling process. Each solution of the fluid/structural solver in the coupling process can be seen as a sensitivity response of an applied displacement/pressure mode. The applied modes and their responses are used to build up a reduced-order model. The proposed model is used to predict the unsteady flow fields of a particular flow-induced vibrational phenomenon – a fixed cubic rigid body is submerged in an incompressible fluid flow (water), an elastic plate is attached to the rigid body in the centre of the downstream face, and the vortices, which separate from the corners of the rigid body upstream, generate lift forces which excite continuous oscillations of the elastic plate downstream. The computational results show that a fairly good convergence solution is achieved by using the reduced-order model that is based on only a few displacement and stress modes, which largely reduces the computational cost, compared with traditional approaches. At the same time, comparison of the numerical results of the model with available experimental data validates the methodology and assesses its accuracy.  相似文献   

19.
Service life of cyclically loaded components is often determined by the propagation of short fatigue cracks, which is highly influenced by microstructural features such as grain boundaries. A two-dimensional model to simulate the growth of such stage I-cracks is presented. The crack is discretised by dislocation discontinuity boundary elements and the direct boundary element method is used to mesh the grain boundaries. A superposition procedure couples these different boundary element methods to employ them in one model. Varying elastic properties of the grains are considered and their influence on short crack propagation is studied. A change in crack tip slide displacement determining short crack propagation is observed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In order to identify the crack of the sprocket wheel correctly, the wavelet finite element method is studied in depth. Firstly, the progress of study on the wavelet finite element method is summarized, and then the basic property of wavelet analysis is analyzed, and then the wavelet finite element theory model of sprocket wheel in sintering machine is studied, and the Daubechies wavelet plate element and isoparametric plate element of crack tip are established, and then the theory of constructing crack identification database of the crack for sprocket wheel is studied, and finally the effective of this method is verified by identify the sprocket wheels with five kinds of cracks based on the vibration test, and results showed that this method can identify the crack of the sprocket wheel correctly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号