首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A strong discontinuity based adaptive refinement approach for the modeling of crack branching
Authors:Arun Raina  Christian Linder
Institution:Institute of Applied Mechanics (CE) Chair I, University of Stuttgart, 70550 Stuttgart, Pfaffenwaldring 7, Germany
Abstract:In the current work, the physical phenomena of dynamic fracture of brittle materials involving crack growth, acceleration and consequent branching is simulated. The numerical modeling is based on the approach where the failure in the form of cracks or shear bands is modeled by a jump in the displacement field, the so called ‘strong discontinuity’. The finite element method is employed with this strong discontinuity approach where each finite element is capable of developing a strong discontinuity locally embedded into it. The focus in this work is on branching phenomena which is modeled by an adaptive refinement method by solving a new sub-boundary value problem represented by a finite element at the growing crack tip. The sub-boundary value problem is subjected to a certain kinematic constraint on the boundary in the form of a linear deformation constraint. An accurate resolution of the state of material at the branching crack tip is achieved which results in realistic dynamic fracture simulations. A comparison of resulting numerical simulations is provided with the experiment of dynamic fracture from the literature. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号