首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The accurate detection and alleviation of driving fatigue are of great significance to traffic safety. In this study, we tried to apply the modified multi-scale entropy (MMSE) approach, based on variational mode decomposition (VMD), to driving fatigue detection. Firstly, the VMD was used to decompose EEG into multiple intrinsic mode functions (IMFs), then the best IMFs and scale factors were selected using the least square method (LSM). Finally, the MMSE features were extracted. Compared with the traditional sample entropy (SampEn), the VMD-MMSE method can identify the characteristics of driving fatigue more effectively. The VMD-MMSE characteristics combined with a subjective questionnaire (SQ) were used to analyze the change trends of driving fatigue under two driving modes: normal driving mode and interesting auditory stimulation mode. The results show that the interesting auditory stimulation method adopted in this paper can effectively relieve driving fatigue. In addition, the interesting auditory stimulation method, which simply involves playing interesting auditory information on the vehicle-mounted player, can effectively relieve driving fatigue. Compared with traditional driving fatigue-relieving methods, such as sleeping and drinking coffee, this interesting auditory stimulation method can relieve fatigue in real-time when the driver is driving normally.  相似文献   

2.
Functional brain network (FBN) is an intuitive expression of the dynamic neural activity interaction between different neurons, neuron clusters, or cerebral cortex regions. It can characterize the brain network topology and dynamic properties. The method of building an FBN to characterize the features of the brain network accurately and effectively is a challenging subject. Entropy can effectively describe the complexity, non-linearity, and uncertainty of electroencephalogram (EEG) signals. As a relatively new research direction, the research of the FBN construction method based on EEG data of fatigue driving has broad prospects. Therefore, it is of great significance to study the entropy-based FBN construction. We focus on selecting appropriate entropy features to characterize EEG signals and construct an FBN. On the real data set of fatigue driving, FBN models based on different entropies are constructed to identify the state of fatigue driving. Through analyzing network measurement indicators, the experiment shows that the FBN model based on fuzzy entropy can achieve excellent classification recognition rate and good classification stability. In addition, when compared with the other model based on the same data set, our model could obtain a higher accuracy and more stable classification results even if the length of the intercepted EEG signal is different.  相似文献   

3.
With the rapid development of modern social science and technology, the pace of life is getting faster, and brain fatigue has become a sub-health state that seriously affects the normal life of people. Electroencephalogram (EEG) signals reflect changes in the central nervous system. Using EEG signals to assess mental fatigue is a research hotspot in related fields. Most existing fatigue detection methods are time-consuming or don’t achieve satisfactory results due to insufficient features extracted from EEG signals. In this paper, a 2-back task is designed to induce fatigue. The weight value of each channel under a single feature is calculated by ReliefF algorithm. The classification accuracy of each channel under the corresponding features is analyzed. The classification accuracy of each single channel is combined to perform weighted summation to obtain the weight value of each channel. The first half channels sorted in descending order based on the weight value is chosen as the common channels. Multi-features in frequency and time domains are extracted from the common channel data, and the sparse representation method is used to perform feature fusion to obtain sparse fused features. Finally, the SRDA classifier is used to detect the fatigue state. Experimental results show that the proposed methods in our work effectively reduce the number of channels for computation and also improve the mental fatigue detection accuracy.  相似文献   

4.
It is well known that there may be significant individual differences in physiological signal patterns for emotional responses. Emotion recognition based on electroencephalogram (EEG) signals is still a challenging task in the context of developing an individual-independent recognition method. In our paper, from the perspective of spatial topology and temporal information of brain emotional patterns in an EEG, we exploit complex networks to characterize EEG signals to effectively extract EEG information for emotion recognition. First, we exploit visibility graphs to construct complex networks from EEG signals. Then, two kinds of network entropy measures (nodal degree entropy and clustering coefficient entropy) are calculated. By applying the AUC method, the effective features are input into the SVM classifier to perform emotion recognition across subjects. The experiment results showed that, for the EEG signals of 62 channels, the features of 18 channels selected by AUC were significant (p < 0.005). For the classification of positive and negative emotions, the average recognition rate was 87.26%; for the classification of positive, negative, and neutral emotions, the average recognition rate was 68.44%. Our method improves mean accuracy by an average of 2.28% compared with other existing methods. Our results fully demonstrate that a more accurate recognition of emotional EEG signals can be achieved relative to the available relevant studies, indicating that our method can provide more generalizability in practical use.  相似文献   

5.
雷敏  孟光  张文明  Nilanjan Sarkar 《物理学报》2016,65(10):108701-108701
自闭症谱系障碍是一种涉及感觉、情感、记忆、语言、智力、动作等认知功能和执行功能障碍的精神疾病. 本文从神经工效学角度出发, 用虚拟开车环境作为复杂多任务激励源将大脑系统与人体动作控制等有机地结合起来, 通过对脑电信号的滑动平均样本熵分析来探索自闭症儿童在虚拟开车环境中的脑活动特征. 研究发现不论是休息状态还是开车状态, 自闭症患者的滑动平均样本熵总体上低于健康者, 尤其在前额叶、颞叶、顶叶和枕叶功能区, 表明自闭症儿童的行为适应性较低. 不过, 自闭症患者的开车状态与健康受试者的休息状态比较接近, 表明虚拟开车环境或许有助于自闭症患者的干预治疗. 此外, 自闭症患者在颞叶区呈现显著性右半球优势性. 本研究为进一步深入开展自闭症疾病的机理研究及其诊断、评估和干预等研究提供一种新的研究思路.  相似文献   

6.
本文开展了基于单光子调制频谱测量量子点荧光寿命动力学特性的研究.在脉冲激光激发下,对探测到的量子点单光子荧光信号进行频谱分析以获得荧光调制频谱,研究发现特征频谱信号幅值与荧光寿命之间存在确定的非线性对应关系.这种单光子调制频谱方法能有效消除背景噪声和单光子探测器暗计数的影响,用于分析量子点荧光寿命动力学特性时在准确度以及时间分辨率方面都较目前普遍采用的荧光衰减曲线寿命拟合方法呈现出明显优势:当涨落误差为5%时,寿命测量准确度提高了一个数量级;当涨落误差和偏离误差均为5%时,对动力学测量效率以及时间分辨率提高了四倍以上.因此单光子调制频谱可以作为获取量子点在短时间尺度内激发态动力学信息的一种有效技术手段.  相似文献   

7.
王莹  侯凤贞  戴加飞  刘新峰  李锦  王俊 《物理学报》2015,64(8):88701-088701
脑电信号是一种产生机理相当复杂且非常微弱的随机信号, 综合反映了大脑组织的脑电活动及大脑的功能状态. 由于脑电信号的微弱性, 传统的基本模板方法在脑电信号分析上得到了良好的应用. 为进一步提升分析脑电信号的性能, 提出了一种新的基于自适应模板的转移熵方法并分析了青少年脑电与成年人脑电信号. 结果表明: 对于青少年脑电还是成年人脑电, 与基本模板法相比, 基于自适应模板法的转移熵可以更显著地表示脑电信号的耦合作用, 并且具有更好的区分度, 这将能更好地捕捉到信号中的动态信息、系统动力学复杂性的改变. 同时, 该方法将更有利于医学临床诊断的辅助检测, 对脑电信号是否处于病理状态的诊断提供了新的更好的判断依据.  相似文献   

8.
A novel video fusion framework based on the three-dimensional surfacelet transform (3D-ST) is proposed in this paper. Different from the traditional individual-frame based video fusion methods, the proposed framework fused multi-frame images of input videos as a whole rather than frame by frame independently with the 3D-ST. Furthermore, under the proposed framework, two ST-based video fusion algorithms are proposed. In the first algorithm, no special treatment is performed on the temporal motion information in input videos, and only a spatial-temporal region energy-based fusion rule is employed. While in the second algorithm, a modified z-score based motion detection is performed to distinguish the temporal motion information from the spatial geometry information, and then a motion-based fusion rule is present. Experimental results demonstrate that, with the motion selectivity of the 3D-ST, existing static image fusion rules can be extended to video fusion under the proposed framework. Both of the two proposed fusion algorithms significantly outperform some traditional individual-frame based and motion-based methods in spatial-temporal information extraction as well as in temporal stability and consistency. In addition, the second proposed algorithm is with high computation efficiency and can be applied to real-time video fusion.  相似文献   

9.
何群  王煜文  杜硕  陈晓玲  谢平 《物理学报》2018,67(11):118701-118701
运动想象模式识别率的提高对脑机接口(BCI)技术的应用具有重要意义,本文采用自适应无参经验小波变换(APEWT)和选择集成分类模型相结合的方法提高脑电(EEG)信号的分类识别准确率.首先,通过APEWT将EEG信号分解成不同的模态;然后,使用最优模态重构后的信号计算其能量谱(ES)特征,使用最优模态分量计算其边际谱(MS)特征;最后,将不同时间段的ES特征和不同频段的MS特征输入到构建的选择集成分类模型中,从而得到其分类结果,并将该方法与其他4种组合方法进行比较.实验结果表明,本文方法具有较好分类准确率和实时性,其平均分类正确率高于其他4种方法,同时较近期使用相同数据的文献也有优势.本文为在线运动想象类BCI的应用提供了新的方法和思路.  相似文献   

10.
建议了一种基于光流动态纹理(optical flow dynamic texture)的高分辨率遥感影像变化检测新方法,用一种运动的关系描述地物变化,能够在多时相高分辨率遥感影像中自动获取土地利用和土地覆盖的变化信息。利用光流理论从原理上描述了地物渐变的过程,突破了以往遥感变化检测方法中认为地物发生突变的假设。该方法的流程简单,易于在目前的土地管理、城市规划等需要发现用地变化的系统和软件中使用。该方法考虑到了多时相遥感影像间的时间维度特征,为遥感变化检测提供了更加丰富的信息,进而改善了变化检测方法主要依赖空间维度信息的现状。以光流动态纹理作为变化的基本体现,结合光谱信息共同用于高分辨率遥感影像的支持向量机分类后变化检测,方法顾及了遥感影像时间维度的纹理,相较大多数空间纹理其数据量较小;纹理计算仅需设定一个参数,自动程度较高;可缓解行业中大量人工解译的现状。通过利用中国大庆市杜尔伯特蒙古自治县2011年和2012年QuickBird影像对该方法的有效性进行了评价。深入分析了不同的光流平滑系数α对该方法的影响,以及对地物变化描述效果的影响。实验结果显示,该方法效果理想,总体精度达到87.29%、Kappa系数达到0.850 7,其精度优于单纯利用光谱信息的分类后变化检测方法。  相似文献   

11.
基于变分模态分解-传递熵的脑肌电信号耦合分析   总被引:2,自引:0,他引:2       下载免费PDF全文
谢平  杨芳梅  李欣欣  杨勇  陈晓玲  张利泰 《物理学报》2016,65(11):118701-118701
皮层肌肉功能耦合是大脑皮层和肌肉组织间的相互作用, 脑肌电信号的多尺度耦合特征可以体现皮层-肌肉间多时空的功能联系. 本文引入变分模态分解并与传递熵结合, 构建变分模态分解-传递熵模型应用于脑肌间耦合研究. 首先基于变分模态分解将同步采集的脑电(EEG) 和肌电(EMG) 信号分别进行时频尺度化, 然后计算不同时频尺度间的传递熵值, 获取不同耦合方向(EEG→EMG 及EMG→EEG) 上不同尺度间的非线性耦合特征. 结果表明, 在静态握力输出条件下, 皮层与肌肉beta (15—35 Hz) 频段间的耦合强度最为显著; EEG→EMG 方向上脑电与肌电高gamma (50—72 Hz) 频段的耦合强度总体上高于EMG→EEG 方向.研究结果揭示皮层-肌肉功能耦合具有双向性, 且脑肌间不同耦合方向上、不同频段间的耦合强度有所差异.因此可利用变分模态分解-传递熵方法定量刻画大脑皮层与肌肉各时频段之间的非线性同步特征及功能联系.  相似文献   

12.
Animals perceive their environment by converting sensory stimuli into action potentials, or temporal point processes, that are interpreted by the brain. This paper investigates the information content of point processes extracted from echoes from in situ plants in an effort to understand how bats recognize landmarks in the field. A mobile sonar converts echoes into biologically similar temporal point processes. termed pseudo-action potentials (PAPs), whose inter-PAP interval relates to echo amplitude. The sonar forms a sector scan of an object to produce a spatial-temporal PAP field. Classifier neurons apply delays and coincidence detection to the PAP field to identify three distinct echo types, glints, blobs, and fuzz, which characterize plant features. Glints are large amplitude echoes exhibiting coherence over successive echoes in the sector scan, typically produced by favorably oriented isolated specular reflectors. Blobs are large echoes lacking coherence, typically bordering glints or formed by collections of interfering reflectors. Fuzz represents weak echoes, typically produced by collection of weak scatterers or by reflectors on the beam periphery. A small mirror reflector models a flat leaf surface and motivates the glint criteria. Classifiers are applied to experimental data from two types of tree trunks, a glint-producing sycamore (Platanus occidenatalis) and a glint-absent Norway maple (Acer platanoides) and two plants, a glint-producing rhododendron (Rhododendron maximus) and a glint-absent yew (Taxus media). We speculate that our narrow-band sonar models the activity of a single frequency bin in the frequency-modulated (FM) sweep emitted by bats, and that one function of the frequency bins in the FM sweep is to form a sector scan of the environment.  相似文献   

13.
癫痫脑电信号分类对于癫痫诊治具有重要意义.为了实现病灶性与非病灶性癫痫脑电信号的分类,本文利用弹性网回归重构变分模态分解算法,提出弹性变分模态分解算法并将其应用到所提癫痫脑电信号分类方法中.该方法先将原信号分割成多个子信号,并对各子信号进行弹性变分模态分解,然后从分解后的不同变分模态函数中提取精细复合多尺度散布熵作为特征,最后利用支持向量机进行分类.针对癫痫脑电的公共数据集,最终的实验结果表明,准确率、灵敏度和特异度三个性能指标分别达到92.54%,93.22%和91.86%.  相似文献   

14.
根据同步解调的原理,考察振动声调制检测输出信号中的调制成分,对金属杆内振动/超声在裂纹面上的相互作用进行了分析.制作了含有不同尺寸裂纹的铝杆试样,以扫频激励的方式得到合适的高频激励参数,分析输出信号中的调制信息,发现工件中的高频超声可分为两部分:一部分声波通过裂纹面,受到低频振动信号的调制,另一部分则保持不变。在此基础上对非线性调制模型进行了修正,并提出了一种用于裂纹检测的定量方法。与超声C扫描检测结果对比表明,此定量方法可用于估计金属杆中疲劳裂纹尺寸。   相似文献   

15.
We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.  相似文献   

16.
According to the principle of synchronous demodulation,the modulation information in the output signal of vibro-acoustic modulation test was investigated and the nonlinear interaction of sound and vibration with the crack interface in a metallic rod was analyzed.A swept signal excitation was used to obtain a proper high frequency parameter in the test of aluminum rod samples with different sizes of cracks and the modulation information in the output signal was analyzed.It was found that the ultrasound wave in the structure can be separated into two parts.One is the wave which passes through the crack interface modulated by the low frequency vibration,and other wave has no any changes.The nonlinear modulation model was modified and a quantitative method for crack detection was proposed.It is demonstrated by comparing with the ultrasonic C-scanning that this method can be used to estimate the fatigue crack size in the metallic rod.  相似文献   

17.
The diagnosis of several neurological disorders is based on the detection of typical pathological patterns in electroencephalograms (EEGs). This is a time-consuming task requiring significant training and experience. A lot of effort has been devoted to developing automatic detection techniques which might help not only in accelerating this process but also in avoiding the disagreement among readers of the same record. In this work, Neyman-Pearson criteria and a support vector machine (SVM) are applied for detecting an epileptic EEG. Decision making is performed in two stages: feature extraction by computing the wavelet coefficients and the approximate entropy (ApEn) and detection by using Neyman-Pearson criteria and an SVM. Then the detection performance of the proposed method is evaluated. Simulation results demonstrate that the wavelet coefficients and the ApEn are features that represent the EEG signals well. By comparison with Neyman-Pearson criteria, an SVM applied on these features achieved higher detection accuracies.  相似文献   

18.
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705–717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner.  相似文献   

19.
This paper analyses the complexity of electroencephalogram (EEG) signals in different temporal scales for the analysis and classification of focal and non-focal EEG signals. Futures from an original multiscale permutation Lempel–Ziv complexity measure (MPLZC) were obtained. MPLZC measure combines a multiscale structure, ordinal analysis, and permutation Lempel–Ziv complexity for quantifying the dynamic changes of an electroencephalogram (EEG). We also show the dependency of MPLZC on several straight-forward signal processing concepts, which appear in biomedical EEG activity via a set of synthetic signals. The main material of the study consists of EEG signals, which were obtained from the Bern-Barcelona EEG database. The signals were divided into two groups: focal EEG signals (n = 100) and non-focal EEG signals (n = 100); statistical analysis was performed by means of non-parametric Mann–Whitney test. The mean value of MPLZC results in the non-focal group are significantly higher than those in the focal group for scales above 1 (p < 0.05). The result indicates that the non-focal EEG signals are more complex. MPLZC feature sets are used for the least squares support vector machine (LS-SVM) classifier to classify into the focal and non-focal EEG signals. Our experimental results confirmed the usefulness of the MPLZC method for distinguishing focal and non-focal EEG signals with a classification accuracy of 86%.  相似文献   

20.
This paper presents a spatial and temporal bilateral filter (BF) to detect target trajectories, by extracting spatial target information using a spatial BF and temporal target information using a temporal BF. Background prediction when it is covered by targets is the key to small target detection. In order to apply the BF to a small target detection field for this purpose, this paper presents a novel spatial and temporal BF with an adaptive standard deviation to predict spatial background and temporal background profiles, based on analysis of the blocks surrounding a spatial and temporal filter window. In order to discriminate between the edge or object regions with a flat background and the target region spatially and temporally, spatial and temporal variances of the blocks surrounding the filter window are calculated in a spatial infrared (IR) image and temporal profile. The spatial and temporal variances adjust standard deviations of the spatial and temporal BF. Through this procedure, spatial background and temporal background profiles are predicted, and then small targets can be detected by subtracting the predicted spatial background (and temporal background profile) from the original IR image (and original temporal profile) and multiplying spatial and temporal target information. To compare existing target detection methods and the proposed method, signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF) are employed for spatial performance comparison and receiver operating characteristics (ROC) is used for detection-performance comparison of the target trajectory. Experimental results show that the proposed method has a superior target detection rate and a lower false-alarm rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号