首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Optimal design and operation of bioreactors for insect cell culture is facilitated by functional relations providing quantitative information on cellular metabolite consumption kinetics, as well as on the specific cell growth rates (μG). Initial specific consumption rates of glucose, malate, and oxygen, and associated changes in μG, were measured forSpodoptera frugiperda clone 9 (Sf9) cells grown in batch suspension culture in medium containing 7–35 mM glucose, 0–16 mM malate, and 4–16 mM glutamine. The initial specific glucose consumption rate (q G ) could be described by a modified Michaelis-Menten equation treating malate as a “competitive” inhibitorK 1 = 6.5 mM) and glutamine as a “noncompetitive” inhibitorK I = 14 mM) ofq G , with aK m of 7.1 mM for glucose. All three carbon sources were found to increase μG in a saturable manner, and a modified Monod equation was employed to describe this relationship (μGmax = 0.047 h-1). The initial specific oxygen consumption rate (qO2) in Sf9 cells could be related to μG by the maintenance energy model, and it was calculated that, under typical culture conditions, about 15–20% of the cellular energy demand comes from functions not related to growth. Fitted parameters in mathematical expression for μg: K4, Monod constant for glucose (mM); K5, modified Monod constant for malate (mM); K6, Monod constant for glutamine (mM); mo2, specific consumption rate of oxygen by the cells under zero-growth conditions (nmol/cell/h); qF, initial specific fumarate production rate (nmol/cell/ h);q G , initial specific glucose consumption rate (nmol/cell/h); qGmax, maximum initial specific glucose consumption rate (nmol/cell/h);q M , initial specific malate consumption rate (nmol/cell/h); qo2, initial specific oxygen consumption rate (nmol/cell/h); Yo2, cell yield on oxygen (cells/nmol); μ, initial specific cell growth rate (h-1); μg, initial specific cell growth rate (h-1); μGmax, maximum initial specific cell growth rate (h-1).  相似文献   

2.
Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose–xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h?1. With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.  相似文献   

3.
Recombinant Zymomonas mobilis CP4:pZB5 was grown with pH control in batch and continuous modes with either glucose or xylose as the sole carbon and energy source. In batch cultures in which the ratio of the final cell mass concentration to the amount of sugar in the medium was constant (i.e., under conditions that promote “coupled growth”), maximum specific rates of glucose and xylose consumption were 8.5 and 2.1 g/(g of cell…h), respectively; maximum specific rates of ethanol production for glucose and xylose were 4.1 and 1.0 g/(g of cell…h), respectively; and average growth yields from glucose and xylose were 0.055 and 0.034 g of dry cell mass (DCM)/g of sugar respectively. The corresponding value of YATP for glucose and xylose was 9.9 and 5.1 g of DCM/mol of ATP, respectively. YATP for the wild-type culture CP4 with glucose was 10.4g of DCM/mol of ATP. For single substratechem ostat cultures in which the growth rate was varied as the dilution rate (D), the maximum or “true” growth yield (max Ya/s) was calculated from Pirt plots as the inverse of the slope of the best-fit linear regression for the specific sugar utilization rate as a function of D, and the “maintenance coefficient” (m) was determined as the y-axis intercept. For xylose, values of max Y s/s and m were 0.0417g of DCM/g of xylose (YATP=6.25) and 0.04g of, xylose/(g of cell…h), respectively. However, with glucose there was an observed deviation from linearity, and the data in the Pirt plot was best fit with a second-order polynomial in D. At D>0.1/h, YATP=8.71 and m=2.05g of glu/(g of cell…h) whereas at D<0.1/h, YATP=4.9g of DCM/mol of ATP and m=0.04g of glu/(g of cell…h). This observation provides evidence to question the validity of the unstructured growth model and the assumption that Pirt's maintenance coefficient is a constant that is in dependent of the growth rate. Collectively, these observations with individual sugars and the values assign ed to various growth and fermentation parameters will be useful in the development of models to predict the behavior of rec Zm in mixed substrate fermentations of the type associated with biomass-to-ethanol processes.  相似文献   

4.
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h−1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized. Prepared for 29th Symposium on Biotechnology for Fuels and Chemicals.  相似文献   

5.
A non‐natural cofactor and formate driven system for reductive carboxylation of pyruvate is presented. A formate dehydrogenase (FDH) mutant, FDH*, that favors a non‐natural redox cofactor, nicotinamide cytosine dinucleotide (NCD), for generation of a dedicated reducing equivalent at the expense of formate were acquired. By coupling FDH* and NCD‐dependent malic enzyme (ME*), the successful utilization of formate is demonstrated as both CO2 source and electron donor for reductive carboxylation of pyruvate with a perfect stoichiometry between formate and malate. When 13C‐isotope‐labeled formate was used in in vitro trials, up to 53 % of malate had labeled carbon atom. Upon expression of FDH* and ME* in the model host E. coli, the engineered strain produced more malate in the presence of formate and NCD. This work provides an alternative and atom‐economic strategy for CO2 fixation where formate is used in lieu of CO2 and offers dedicated reducing power.  相似文献   

6.
A simplified assay platform was developed to measure the activities of the key oxidoreductases in central carbon metabolism of various marine bacteria. Based on microplate assay, the platform was low-cost and simplified by unifying the reaction conditions of enzymes including temperature, buffers, and ionic strength. The central carbon metabolism of 16 marine bacteria, involving Pseudomonas, Exiguobacterium, Marinobacter, Citreicella, and Novosphingobium were studied. Six key oxidoreductases of central carbon metabolism, glucose-6-phosphate dehydrogenase, pyruvate dehydrogenase, 2-ketoglutarate dehydrogenase, malate dehydrogenase, malic enzyme, and isocitrate dehydrogenase were investigated by testing their activities in the pathway. High activity of malate dehydrogenase was found in Citreicella marina, and the specific activity achieved 22 U/mg in cell crude extract. The results also suggested that there was a considerable variability on key enzymes’ activities of central carbon metabolism in some strains which have close evolutionary relationship while they adapted to the requirements of the niche they (try to) occupy.  相似文献   

7.
The influence of ethanol on fermentation by Pachysolen tannophilus was studied. When xylose utilization rate was 80%, ethanol concentration began to decline. Fermentation of P. tannophilus was affected by ethanol addition in the beginning of fermentation; average xylose consumption rate was 0.065 g·l−1·h−1, and maximum specific growth rate was 0.07 h−1 at 28 g·l−1 ethanol, comparing with the average xylose consumption rate of 0.38 g·l−1·h−1 and maximum specific growth rate of 0.14 h−1 in fermentation with no ethanol addition; P. tannophilus stopped growth at 40 g·l−1 ethanol. When the initial ethanol concentration was 30 g·l−1, the addition of glucose in xylose media made the growth of P. tannophilus better, and the most favorable glucose concentration was 15 g·l−1 with the highest biomass of 1.51 g·l−1 as compared with that of 0.95 g·l−1 in pure xylose media.  相似文献   

8.
The continuous cofermentation performance of xylose-fermentingZymomonas mobilis at 30°C and pH 5.5 was characterized using a pure-sugar feed solution that contained 8 g/L glucose and 40 g/L xylose. Successful chemostat start up resulted in complete utilization of glucose and greater than 85% utilization of xylose, but was only reproducibly achieved using initial dilution rates at or less than 0.04/h; once initiated, cofermentation could be maintained at dilution rates of 0.04 to 0.10/h. Whereas xylose and cell-mass concentrations increased gradually with increasing dilution rate, ethanol concentrations and ethanol yields on available sugars remained approximately constant at 20–22 g/L and 80–90% of theoretical, respectively. Volumetric and specific ethanol productivities increased linearly with increasing dilution rate, rising from approx 1.0 each (g/L/h or g/g/h) at a dilution rate of 0.04/h to approx 2.0 each (g/L/h or g/g/h) at a dilution rate of 0.10/h. Similarly, specific sugar-utilization rates increased from approx 2.0 g/g/h at dilution rate 0.04/h to approx 3.5 g/g/h at dilution rate of 0.10/h. The estimated values of 0.042 g/g for the maximum Z.mobilis cell-mass yield on substrate and 1.13 g/g/h for the minimum specific substrate utilization rate required for cellular maintenance energy are within the range of values reported in the literature. Results are also presented which suggest that long-term adaptation in continuous culture is a powerful technique for developing strains with higher tolerance to inhibitory hemicellulose hydrolyzates.  相似文献   

9.
Cultivation of the fission yeastSchizosaccharomyces pombe in a cellrecycle fermentor with cross-flow filtration using mineral membranes to recycle the biomass is described. Total cell retention resulted in high cell density cultures with high productivities. The dependence of both the growth kinetics and metabolic status on the operating conditions was identified and quantified. Growth was controlled by the inhibitory effect of ethanol so long as glucose was in excess as might be expected for fermentative metabolism. Under oxygen excess conditions, a partly oxidative catabolism of glucose occurred due to growth limitation by the glucose feed flow. The cells displayed a purely oxidative metabolism when ethanol was not present in the broth but a respiro-fermentative metabolism when ethanol was present as was the case when oxygen supply to the culture was limiting.  相似文献   

10.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   

11.
The gpdA-promoter-controlled exocellular production of glucose oxidase (GOD) by recombinant Aspergillus niger NRRL-3 (GOD3-18) during growth on glucose and nonglucose carbon sources was investigated. Screening of various carbon substrates in shake-flask cultures revealed that exocellular GOD activities were not only obtained on glucose but also during growth on mannose, fructose, and xylose. The performance of A. niger NRRL-3 (GOD3-18) using glucose, fructose, or xylose as carbon substrate was compared in more detail in bioreactor cultures. These studies revealed that gpdA-promoter-controlled GOD synthesis was strictly coupled to cell growth. The gpdA-promoter was most active during growth on glucose. However, the unfavorable rapid GOD-catalyzed transformation of glucose into gluconic acid, a carbon source not supporting further cell growth and GOD production, resulted in low biomass yields and, therefore, reduced the advantageous properties of glucose. The total (endo- and exocellular) specific GOD activities were lowest when growth occurred on fructose (only a third of the activity that was obtained on glucose), whereas utilization of xylose resulted in total specific GOD activities nearly as high as reached during growth on glucose. Also, the portion of GOD excreted into the culture fluid reached similar high levels (≅ 90%) by using either glucose or xylose as substrate, whereas growth on fructose resulted in a more pelleted morphology with more than half the total GOD activity retained in the fungal biomass. Finally, growth on xylose resulted in the highest biomass yield and, consequently, the highest total volumetric GOD activity. These results show that xylose is the most favorable carbon substrate for gpdA-promoter-controlled production of exocellular GOD.  相似文献   

12.
The dynamics of ethanol production/consumption in baker's yeast were studied under feed- rate controlled conditions. The yeast was grown on molasses in an 8-l fed-batch reactor and experiments were done at cell concentrations between 5 and 65 g l?1. Small changes in the feed rate were made around a feed rate corresponding to the critical growth rate, at which the yeast cell metabolism switches between ethanol consumption and production. A membrane gas sensor was used for on-line measurement of the ethanol concentration in the broth. The measured ethanol signal was used for control and the system was excited through changes in the regulator set-point. The closed-loop experiments ensured that feed variations were within the critical range, and thus facilitated reproducible experiments. Data were fitted to a second-order difference equation by statistical methods. Results were compared with a theoretically derived model. The process gain could be understood in terms of the underlying stoichiometry by using the “bottleneck” view of yeast glucose metabolism. The process time constant was found to be longer than is implied by a simple Monod relation between glucose uptake rate and concentration.  相似文献   

13.
The production of yeast cell wall mannan degrading -mannosidase was studied in shake flask experiments as well as in a highly instrumented, computer-coupled bioreactor. The enzyme is predominantly excreted into the culture liquid upon submerged cultivation on yeast mannan. Only low activities were detected with mannose or glucose as carbon source whereas the enzyme formation was totally repressed by glycerol. The amount of enzyme produced is proportional to the microbial biomass formed.Carbon-unlimited cultivation on mannose, the primary product of enzymic digestion, resulted in a specific growth rate of 0.10h–1, a specific oxygen uptake rate ·h and a respiratory quotient ofRQ=1.0. Addition of yeast mannan (0.5%) to nutrient-depleted bacterial cells resulted in an almost complete utilization of this substrate, with 55% of substrate carbon being converted to biomass and 37% to carbon dioxide. The yield coefficient on mannan wasY x/s =0.51 (g/g). Enzyme formation started with a delay of 30–40 min and stopped with termination of growth. Due to the increased production of mannose by the action of the enzyme the specific growth rate increased from 0.05 to 0.10 h–1, thus enabling computations of maintenance and yield coefficients for oxygen and carbon dioxide metabolism.
  相似文献   

14.
A non-natural cofactor and formate driven system for reductive carboxylation of pyruvate is presented. A formate dehydrogenase (FDH) mutant, FDH*, that favors a non-natural redox cofactor, nicotinamide cytosine dinucleotide (NCD), for generation of a dedicated reducing equivalent at the expense of formate were acquired. By coupling FDH* and NCD-dependent malic enzyme (ME*), the successful utilization of formate is demonstrated as both CO2 source and electron donor for reductive carboxylation of pyruvate with a perfect stoichiometry between formate and malate. When 13C-isotope-labeled formate was used in in vitro trials, up to 53 % of malate had labeled carbon atom. Upon expression of FDH* and ME* in the model host E. coli, the engineered strain produced more malate in the presence of formate and NCD. This work provides an alternative and atom-economic strategy for CO2 fixation where formate is used in lieu of CO2 and offers dedicated reducing power.  相似文献   

15.
Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mgO2/gDW h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mgO2/gDW h. The carbon source consumption is linear during the whole process.  相似文献   

16.
Abstract— Rates of leucíne transport, oxygen utilization, and glucose and succinate uptake were determined in cultures of Escherichia coli B/r before and after exposure to near-UV light. Within experimental errors, rates of uptake of glucose and of succinate were proportional to growth rate at all times during the recovery or growth delay period following near-UV exposure and the same proportionality was maintained in unexposed cultures. However, rates of leucine uptake and incorporation and of oxygen utilization were not related to growth rate in a simple fashion. The results suggest that inhibition of carbon source transport is a fundamental component, and may be a primary mechanism, in growth delay induced by near-UV radiation.  相似文献   

17.
Glucose prevents maltose utilization bySaccharomyces cerevisiae in batch culture, whereas in a mixed carbohydrate-limited chemostat, maltose and glucose were consumed simultaneously. The specific activity of α-glucosidase was dependent on the dilution rate as well as the proportion of maltose in the mixture. Maximum specific activities in the batch and chemostat cultures on mixtures of maltose and glucose were lower than corresponding values observed on maltose alone.  相似文献   

18.
采用简易浸泡法和一步碳化/活化法制备香菇生物质基氮掺杂微孔碳材料(NMCs),利用扫描电子显微镜(SEM)、透射电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对材料的结构形貌进行表征,并研究了其超级电容特性。测试结果表明,NMCs的微孔比表面积高达1 594 m~2·g~(-1),且拥有更高数量的含氮官能团,其吡啶型含氮官能团比例也有所提高,展现出优异的超级电容特性。在0.5 A·g~(-1)的电流密度下,其比容量高达325 F·g~(-1),当电流密度上升到20 A·g~(-1)时,其比电容仍然高达180 F·g~(-1),表现出优异的倍率性能;同时,在5 A·g~(-1)的电流密度下,电极经历5 000次充放电循环后具有97.7%的比容量保持率,展现出优异的循环稳定性。这主要归因于NMCs超高的微孔比表面积和丰富的含氮官能团。  相似文献   

19.

Ethanol yield and ethanol tolerance, the two factors that most constrain the utilization of thermophilic bacteria for ethanol production, were investigated in continuous xylose-grown cultures ofClostridium thermosaccharolyticum. Under xylose-limiting conditions, including varying dilution rates and feed concentrations, the ethanol selectivity (Se, mol/mol) relative to acetic acid, lactic acid, and propane diol remained relatively constant at about 2. Product addition and removal experiments indicate that mass action effects related to the concentrations of organic fermentation products play a relatively minor role in determining the ratios of products made. Of much greater apparent importance were as yet uncharacterized regulatory mechanisms that appear to be correlated with nonlimiting concentrations of the carbon and energy-source. Substrate-plentiful transients were found to accompany Se values > 11. Such transients provide a useful model system for the study of end product control, as well as a cultivation mode with considerable applied potential. No apparent ethanol inhibition was observed, as indicated by no decrease in the maximum rate of growth allowing complete substrate utilization (0.22 h-1) for endogenously-produced ethanol concentrations up to 11.4 g/L, and total endogenously-produced + exogenously-added ethanol concentrations up to 21.3 g/L. Higher concentrations of ethanol are tolerated atµ = 0.11 h-1, although the onset of inhibition was not characterized at this growth rate. Results suggest that the ethanol tolerance of C.thermosaccharolyticum grown in continuous culture may be greater than that typically observed previously for thermophiles grown in batch culture.

  相似文献   

20.
The unconventional yeast Yarrowia lipolytica is used to produce erythritol from glycerol. In this study, the role of the erythrose reductase (ER) homolog YALI0B07117g in erythritol synthesis was analyzed. The deletion of the gene resulted in an increased production of mannitol (308%) and arabitol (204%) before the utilization of these polyols began. The strain overexpressing the YALI0B07117g gene was used to increase the erythritol yield from glycerol as a sole carbon source in batch cultures, resulting in a yield of 0.4 g/g. The specific consumption rate (qs) increased from 5.83 g/g/L for the WT strain to 8.49 g/g/L for the modified strain and the productivity of erythritol increased from 0.28 g/(L h) for the A101 strain to 0.41 g/(L h) for the modified strain. The application of the research may prove positive for shortening the cultivation time due to the increased rate of consumption of the substrate combined with the increased parameters of erythritol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号