首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Detection of water leaks in buried distribution pipes using acoustic methods is common practice in many countries. Correlation techniques are widely used in leak detection, and these have been extremely effective when attempting to locate leaks in metal pipes. However, a number of difficulties have been highlighted when trying to determine the position of leaks in plastic pipes. Of particular interest here is what happens to the leak noise when the pipe passes through an expanse of water, such as across a river or lake.In this paper, the low-frequency acoustic propagation and attenuation characteristics of a submerged plastic water pipe are investigated experimentally in the laboratory, supported by predictions from a theoretical model. It is found that, whilst the signal attenuation for a submerged pipe is increased relative to that for a similar in-vacuo pipe, energy does not, in fact, radiate into the water; furthermore, the attenuation is small compared with that for a pipe buried in soil.  相似文献   

2.
A theoretical analysis for the free vibration of simply supported buried pipes has been investigated using the wave propagation approach. The pipe modeled as a thin cylindrical shell of linear homogeneous isotropic elastic material buried in a linear isotropic homogeneous elastic medium of infinite extent. The vibrations of the pipe are examined by using Flüggle shell equation. The natural frequencies are obtained for the pipes surrounded by vacuo or elastic medium. The results are compared with those available in the literature and agreement is found with them. It is found that the free vibration frequency of the pipe does not appear for some of the axial or circular vibration modes and the real natural frequencies of the pipe are significantly dependent on the rigidity of the surrounding medium.  相似文献   

3.
研究埋地充液管道中低频轴对称波传播特性。将土壤考虑为黏弹介质,结合Kennard薄壳方程和Kelvin-Voigt线性黏弹性模型,引入土壤载荷矩阵,推导出土-管滑移情形下流体主导波和管壁压缩波的相速度表达式。通过数值模拟计算得到流体主导波和管壁压缩波的频散和衰减曲线并进行可靠性验证,分析两种波引起的管壁径向位移之比,讨论厚径比和品质因子对流体主导波传播的影响。结果表明,黏弹介质对流体主导波和管壁压缩波的相速度影响较小,但对衰减影响较大;流体主导波对管壁径向位移有较大的影响,是泄露噪声传播的主要载体;厚径比越大,流体主导波的相速度越大,衰减越小;而品质因子越大,流体主导波的频散和衰减都越小。研究结果可为埋地充液管道的泄漏检测提供一定的理论参考。   相似文献   

4.
The measurement of the acoustic properties of highly attenuative materials such as bitumen is very difficult. One possibility is to use measurements of the extent to which filling a cylindrical waveguide with the material affects the dispersion relationship of the cylinder. Torsional modes have been excited using piezoelectric transducers placed at one end of the cylinder, while the phase velocity and attenuation spectra have been measured by means of laser scanning. At each frequency, under the hypothesis of linear viscoelasticity, the phase velocity and attenuation of the fundamental torsional mode have been calculated as a function of the bulk shear velocity and the bulk shear attenuation of the inner core at that frequency. The resulting phase velocity and guided wave attenuation contour plots have been employed for deriving the unknown shear properties from the measured velocity and attenuation of the guided wave. The monochromaticity of the approach has not required a particular frequency dependence of the material properties to be assumed. Results for bitumen are given.  相似文献   

5.
无限液体介质内管道轴对称纵向导波激发与传播特性研究   总被引:1,自引:0,他引:1  
利用声-结构耦合有限元法,分别对轴对称分布径的向及轴向外力作用在无限液体介质内未充液及充液管道内壁所激发导波进行了模拟,并进一步利用短时傅里叶变换技术对瞬态波形作时频分析,在此基础上,结合色散及衰减曲线,探讨了外力分布特征对导波激发的影响。研究表明,无限液体介质内未充液管中L(0,2)模式及充液管中L(0,3)~L(0,4)模式皆具有高群速度、弱色散且弱衰减频带,适宜用于缺陷探测,而通过控制轴对称分布外力的频率,并令其沿轴向作用于管内壁或外壁,可实现上述导波模式的高效激发。   相似文献   

6.
Acoustic correlators have been used for many years to locate and detect leaks in buried water distribution pipes. Currently, the only way to compare different correlators directly is in the field. This can be problematic as it may be difficult to present exactly the same conditions to each correlator. In recent years, the way in which leak noise propagates in buried water pipes has been determined, and this has enabled the development of a virtual pipe whose behaviour can be simulated in the computer. By coupling the filtering properties of the pipe with electrodynamic shakers, a proof-of-concept virtual pipe test-rig has been developed that will allow different correlators to be compared directly in laboratory conditions. Different situations, such as pipe material and size, and measurement positions, as well as leak strength can be simulated. The theoretical basis of the test-rig and details of the proof-of-concept system are discussed in this paper. It is shown that careful consideration of the dynamics of the shakers is vital if the system is to faithfully model situations that are found in the field.  相似文献   

7.
Corrugated pipes are widely used because they combine local rigidity with global flexibility. Whistling induced by flow through such pipes can lead to serious environmental and structural problems. The whistling of a multiple side branch system is compared to the whistling behavior of corrugated pipes. The study has been restricted to cavities with sharp edges which are convenient for theoretical modeling. The side branch depth is chosen to be equal to the side branch diameter, which corresponds to cavity geometries in typical corrugated pipes. The low frequency resonance modes of the multiple side branch system have been predicted by means of acoustic models, of which the validity has been tested experimentally. Several experiments have been carried out for characterizing the whistling behavior of the system. While the behavior of a multiple side branch system is interesting on its own it can be compared to that of corrugated pipes. These experiments show that the multiple side branch system is in many aspects a reasonable model for corrugated pipes. Advantage of the multiple side branch system is that it is an experimental setup allowing easy modification of cavity depth. We used this feature to identify the pressure nodes of the acoustic standing wave along the main pipe as the regions where sound is produced. This contradicts recent publications on corrugated pipes. Another interesting aspects is that the system appears to whistle at the second hydrodynamic mode of the cavities rather than at the first hydrodynamic mode. A prediction model for the whistling behavior is proposed, consisting of an energy balance, based on the vortex sound theory. The model predicts the observed Strouhal number but overestimates the acoustic fluctuation amplitude by a factor four.  相似文献   

8.
Propagation of free harmonic waves, in a periodically supported infinite pipe, has been studied. The presence of the Coriolis term in the equation of motion renders the phase velocity different for the positive and the negative going waves. Hence no classical normal modes (in the sense of standing modes) exist. Natural frequencies of a periodically supported finite pipe have been obtained by using the wave approach. The response of the infinite pipe to a convected harmonic pressure field has also been obtained. Owing to the difference in the phase velocities of the positive and the negative going free waves, the coincidence frequency depends on the direction of the convected loading. The static buckling or the divergence instability of such pipes has also been considered from the wave approach.  相似文献   

9.
声波在气体中传播时,气体的热粘性效应会使声波产生一定程度的衰减,且气体的声吸收系数随温度的升高而增大。由于发动机的排气温度较高,热粘性效应引起的排气管道中的噪声衰减应加以考虑。基于准平面波理论,首次计算了考虑热粘性效应时不同温度、流速和管道尺寸下排气管道中的传递损失,分析了各参数对管道中噪声衰减的影响。结果表明,随着温度和频率的升高热粘性声衰减增强,而气流流速和管道直径的增加会降低直管中的热粘性声衰减。对于简单膨胀腔,传递损失的预测结果表明,热粘性效应使通过频率处的声衰减有所改善。  相似文献   

10.
爆破地震效应对埋地管线的影响已成为工程爆破领域研究的热点。基于有限元软件ANSYS/LS-DYNA,以两种含Y型焊缝(坡口有2 mm余高焊缝和坡口无余高焊缝)的埋地X70钢管为例,数值模拟研究了TNT炸药量相同(4.473 kg)而炸高(60.0、85.0和110.0 cm)不同时,焊缝区附近埋地X70钢管的动力响应规律。研究表明:当炸高为60.0 cm时,焊缝有余高的管道受应力集中的影响较大,且先于焊缝无余高的管道进入屈服阶段;当炸高为60.0和85.0 cm时,焊缝有余高的管道整体抵抗变形的能力明显弱于焊缝无余高的管道。管土间的相互作用对X70管道背爆面有支撑作用,可有效地减小管道背爆面的位移。在相同条件下,焊缝有余高的X70管道抵抗振动的性能弱于焊缝无余高的管道,且与焊缝形式相比,炸高对含焊缝区的X70管道的最大振速起主要影响作用。  相似文献   

11.
It is well known that airflow in a corrugated pipe can excite whistling at the frequencies of the pipe's longitudinal acoustic modes. This short contribution reports on the results of experiments where a low frequency, oscillating flow with velocity magnitudes of the same order as the airflow has been added. Depending on the oscillation strength, it has been found that this flow may silence the pipe or move the whistling to higher harmonics. It is also shown that the low frequency oscillation itself may excite higher frequency whistling sounds in the pipe.  相似文献   

12.
Turbulent flow through a long pipe terminated by an axisymmetric cavity can give rise to self-sustained oscillations exhibiting a very strong coherence, as evidenced by the narrow-band character of corresponding amplitude spectra. These oscillations, associated with the turbulent axisymmetric jet passing through the cavity, are strongly influenced by the acoustic modes of the pipe. The frequencies of oscillation lie within or near the range of most “unstable” frequencies of the turbulent jet previously predicted by using concepts of inviscid hydrodynamic stability theory; consequently, these experiments show truly self-excited and strongly coherent “instability” of a fully turbulent, low Mach number (~10?2), axisymmetric flow undergoing separation, corroborating previous experiments involving the external forcing of free turbulent jets. As flow velocity or cavity length is varied, both upward and downward jumps in oscillation frequency are observed; the sign (up or down) of these jumps tends to systematically alternate with increase of velocity or length. The role of these frequency jumps is, in effect, to allow the oscillation of the flow to remain “locked-on” to a pipe mode over a wide range of impingement length or flow velocity. Moreover, these jumps exhibit two types of behavior: for the first kind, the predominant frequency makes a relatively continuous transition between stages and the frequency of the neighboring stage appears as a secondary component; for the second kind, there is a dead zone (where no oscillation occurs) between stages. The consequence of externally exciting the system is strongly dependent on whether the self-sustaining oscillation is relatively near, or well away from, a frequency jump. During excitation, the amplitudes of pressure fluctuations in the cavity substantially exceed the corresponding no-flow values only in regions away from the frequency jumps; at locations of jumps, there can be significant attenuation of the no-flow excitation amplitude. For the type of frequency jump involving a “dead zone”, enhancement of a given mode of oscillation can be achieved by externally exciting not only the given mode, but also neighboring modes. For the other type of jump, involving a relatively continuous transition from one stage to the next, the predominant mode of oscillation following the jump is that mode giving maximum amplitude response to excitation before the jump.  相似文献   

13.
Propagation phenomena of wideband guided waves in a bended pipe   总被引:1,自引:0,他引:1  
Nishino H  Yoshida K  Cho H  Takemoto M 《Ultrasonics》2006,44(Z1):e1139-e1143
Ultrasonic guided waves in pipes have been anticipated as a rapid screening technique for pipe inspection because of their long-range propagation due to low energy leakage. In this paper, the propagation phenomena of guided waves in a bended pipe were investigated using a wideband laser ultrasonic system. The laser ultrasonic system, together with wavelet transformation, is a powerful tool for observing the dispersive phenomena intrinsic to guided waves. Bended stainless steel (SUS304) pipes with 6-mm outer diameter and 1-mm wall thickness were used in the experiments. The bending angles of the pipes were set to 0 degrees (straight pipe), 10 degrees, 30 degrees, 60 degrees and 90 degrees. The radius of the bend was 12.5 mm in all the pipes. A Q-switched Nd:YAG laser was employed to generate the guided waves. The generated guided waves were detected with a heterodyne interferometer. The obtained time-domain signals and their wavelet coefficients indicated the following two conclusions: (1) The amplitude of the F(1,1) mode converted from the L(0,1) mode increased with the increase of the bending angle. (2) Mode conversions from the L(0,1) to F(1,1) modes and vice versa were clearly observed in the low-frequency range up to around 200 kHz.  相似文献   

14.
Measurements of the resonant frequencies and quality factors of a series of long, small diameter cylindrical pipes are presented. The dependence of the modal densities, calculated from these measurements, on pipe length, wall thickness and pipe material is in close agreement with theoretical statistical predictions. Measurements of the damping of steel pipes for several different end conditions are also presented. Different, but always well-ordered, variation of modal quality factor with mode order is found in each case. For free-free ends the modal quality factors are large (>1000) and determined by internal material damping, except for modes for which the acoustic radiation damping is large; the effect of radiation damping is most important for those modes which have high wave speeds at low frequencies. The quality factors for rigid end conditions are similar to those for free ends, except for translational modes of low axial order which are damped by vibration of the end supports. For end conditions which allow relative motion between the pipe and the end supports, there is considerable additional damping, probably ascribable to gas pumping in the joints.  相似文献   

15.
太赫兹波空间传输特性研究对于太赫兹波在空间中的应用具有重要意义.为研究太赫兹波在沙尘暴天气中的传输特性,本文根据沙尘粒子尺度的对数正态分布,应用Mie散射理论和Monte Carlo方法,分析了国内不同地域的六种干沙模态沙尘暴对1—10 THz频段太赫兹波的衰减特性,给出了消光参量和衰减率与频率的关系.结果表明,随着频率的增大,1—10 THz频段太赫兹波的衰减率呈先增加后减小的趋势,沙尘暴的模态不同,太赫兹波衰减较强的频段范围有所不同.为了分析沙粒含水量对太赫兹波传输衰减的影响,计算了不同尺寸的沙尘粒子3个效率因子与含水量的关系,发现粒子尺寸不同,含水量对消光的影响也不同;应用Monte Carlo方法计算了两种湿沙模态的沙尘暴对1—10 THz频段太赫兹波的衰减,给出了衰减率与含水量及频率的关系.结果表明,随沙粒含水量增大,沙尘暴对太赫兹波衰减较强的频段向低频方向移动,含水量小于5%时,太赫兹波衰减率随含水量增大显著增强,湿度较大的沙尘暴天气对太赫兹波的传输衰减影响更大.  相似文献   

16.
This paper presents theoretical and experimental studies of axisymmetric longitudinal guided wave L(0,2) interaction with the free edge of the pipe. A numerical method based on normal mode superposition is applied to predict the edge resonance by an analysis of dispersion relations of separate modes. In parallel, the finite element analysis and experimental measurements prove the existence of edge resonance in the pipe in case of L(0,2) wave incidence. It is shown that the edge resonance is mainly caused by the first pair of complex modes. Additionally the behavior of edge resonance phenomenon as a function of the curvature of the pipe is studied. The displacement amplitudes measured at the edge demonstrate that the edge resonance is affected by the frequency and thickness to midradius ratio of the pipe, and it is losing its strength in thicker pipes, as the growing difference between the outer and inner radii destroys symmetry. The reflected energy amplitudes show that at the resonance frequencies the incident wave is strongly converted to L(0,1) and L(0,3) modes, depending also on the curvature parameter of the pipe.  相似文献   

17.
Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.  相似文献   

18.
Cheong YM  Lee DH  Jung HK 《Ultrasonics》2004,42(1-9):883-888
The dispersion curves for the feeder pipes in PHWR nuclear power plants were determined. The wave modes used for the detection of notches in the feeder pipe were confirmed as F(m,2) and/or L(0,1) by an analysis of short time Fourier transformation (STFT). The axial notches in the straight pipe were not detectable, but an axial notch in a bent pipe was detected with the mode at the frequency of 500 kHz. Initial F(m,2) and/or L(0,1) modes contains a circumferential displacement and might be converted to certain complicated modes in the bent region, which is sensitive to the axial notch. The circumferential guided wave technique was also applied for quantitative evaluation of the axial notches. The waves generated by a rocking motion of the transducer along the circumferential direction were estimated as the circumferential guided waves after a review of the acquired data and the dispersion curves.  相似文献   

19.
High-density polyethylene (HDPE) pipes have been widely used as gas or water transport pipes owing to their comprehensive advantages. One of the principal failure modes determining pipe service lifetime is slow crack growth (SCG) with the crack occurring first at the inner surface due to the slow cooling rate of the pipe's inner wall during polyethylene (PE) pipe extrusion. In order to change the conventional cooling mode and increase the cooling rate in the inner wall of PE pipe during extrusion, a novel extrusion equipment was designed and manufactured by our research team. For this paper, compressed air as a cooling medium was introduced through the interior of the hot extruded pipe during its extrusion to realize the quick inner wall cooling, and the effects of the inner wall's cooling rate on the microstructure and mechanical properties of the PE pipe were investigated. The experimental results showed that simultaneously cooling of both the outer and inner walls could decrease the difference in the solidification rate across the pipe and reduce the residual internal stresses in PE pipe. The quick cooling of the inner wall of the extruded pipe could also decrease the PE crystal thickness, and increase the number of tie molecules in the inner wall, which is a key parameter determining the resistance to SCG. As a result, compared to the PE pipe produced by the conventional extrusion, the crack initiation time of the PE pipe manufactured by the novel method increased from 27 h to 45 h and the crack growth rate was slower.  相似文献   

20.
According to the theory of phononic crystals,the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps.We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oil pressure taken into consideration.The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system,and the band gaps in low frequency ranges move towards high frequency ranges.The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydrauhc system is effectively suppressed.All the results are validated by experiment.The experimental results show a good agreement with the numerical calculations,thus the flexural vibration transfer properties of the highpressure periodic pipe can be precisely calculated by taking the Quid structure interaction between the pipe and oil into consideration.This study provides an effective way for the vibration control of the hydraulic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号