首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs.  相似文献   

2.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.  相似文献   

3.
A vertex set D in graph G is called a geodetic set if all vertices of G are lying on some shortest uv path of G, where u, v  D. The geodetic number of a graph G is the minimum cardinality among all geodetic sets. A subset S of a geodetic set D is called a forcing subset of D if D is the unique geodetic set containing S. The forcing geodetic number of D is the minimum cardinality of a forcing subset of D, and the lower and the upper forcing geodetic numbers of a graph G are the minimum and the maximum forcing geodetic numbers, respectively, among all minimum geodetic sets of G. In this paper, we find out the lower and the upper forcing geodetic numbers of block–cactus graphs.  相似文献   

4.
P-matrices play an important role in the well-posedness of a linear complementarity problem (LCP). Similarly, the well-posedness of a horizontal linear complementarity problem (HLCP) is closely related to the column-W property of a matrix k-tuple.In this paper we first consider the problem of generating P-matrices from a given pair of matrices. Given a matrix pair (D, F) where D is a square matrix of order m and matrix F has m rows, “what are the conditions under which there exists a matrix G such that (D + FG) is a P-matrix?”. We obtain necessary and sufficient conditions for the special case when the column rank of F is m ? 1. A decision algorithm of complexity O(m2) to check whether the given pair of matrices (D, F) is P-matrisable is obtained. We also obtain a necessary and an independent sufficient condition for the general case when rank(F) is less than m ? 1.We then generalise the P-matrix generating problem to the generation of matrix k-tuples satisfying the column-W property from a given matrix (k + 1)-tuple. That is, given a matrix (k + 1)-tuple (D1,  ,Dk, F), where Djs are square matrices of order m and F is a matrix having m rows, we determine the conditions under which the matrix k-tuple (D1 + FG1,  ,Dk + FGk) satisfies the column-W property. As in the case of P-matrices we obtain necessary and sufficient conditions for the case when rank(F) = m ? 1. Using these conditions a decision algorithm of complexity O(km2) to check whether the given matrix (k + 1)-tuple is column-W matrisable is obtained. Then for the case when rank(F) is less than m ? 1, we obtain a necessary and an independent sufficient condition.For a special sub-class of P-matrices we give a polynomial time decision algorithm for P-matrisability. Finally, we obtain a geometric characterisation of column-W property by generalising the well known separation theorem for P-matrices.  相似文献   

5.
In this paper, we used the concept of (L, M)-fuzzy remote neighborhood system to study and establish the convergence theory of molecular nets. Next, we introduce the Ti-axioms (i = ?1, 0, 1, 2) in (L, M)-fuzzy topological molecular lattices, and discuss some of their characterizations. Finally, we show that the Ti-axioms (i = ?1, 0, 1, 2) are preserved under homeomorphisms.  相似文献   

6.
The minimum semidefinite rank (msr) of a graph is defined to be the minimum rank among all positive semidefinite matrices whose zero/nonzero pattern corresponds to that graph. We recall some known facts and present new results, including results concerning the effects of vertex or edge removal from a graph on msr.  相似文献   

7.
《Journal of Algebra》2002,247(1):1-23
We study subgroups G of GL(n, R) definable in o-minimal expansions M = (R, +, · ,…) of a real closed field R. We prove several results such as: (a) G can be defined using just the field structure on R together with, if necessary, power functions, or an exponential function definable in M. (b) If G has no infinite, normal, definable abelian subgroup, then G is semialgebraic. We also characterize the definably simple groups definable in o-minimal structures as those groups elementarily equivalent to simple Lie groups, and we give a proof of the Kneser–Tits conjecture for real closed fields.  相似文献   

8.
We have studied the time reversal symmetry violation on the bases of the configuration mixing model and E-infinity theory. With the use of the Cabibbo angle approximation, we have presented the transformation matrix in terms of the golden ratio (?), and shown that the time reversal symmetry violation is described by the configuration mixing of the unstable and stable manifolds (Wu, Ws). The magnitude of the mixing for the weak interaction field is given by the expression sin2 θT(theor)  sin4 θC(theor)  (?)12 = 3.105 × 10?3, which is compared to the Kaon decay experiment ~2.3 × 10?3. We have also discussed the space–time symmetry violation by using the CPT theorem.  相似文献   

9.
10.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

11.
12.
In this work we consider a simple system of piecewise linear discontinuous 1D map with two discontinuity points: X = aX if ∣X < z, X = bX if ∣X > z, where a and b can take any real value, and may have several applications. We show that its dynamic behaviors are those of a linear rotation: either periodic or quasiperiodic, and always structurally unstable. A generalization to piecewise monotone functions X = F(X) if ∣X < z, X = G(X) if ∣X > z is also given, proving the conditions leading to a homeomorphism of the circle.  相似文献   

13.
In this paper, the conditions under which there exists a uniformly hyperbolic invariant set for the generalized Hénon map F(x, y) =  (y, ag(y) ? δx) are investigated, where g(y) is a monic real-coefficient polynomial of degree d ? 2, a and δ are non-zero parameters. It is proved that for certain parameter regions the map has a Smale horseshoe and a uniformly hyperbolic invariant set on which it is topologically conjugate to the two-sided fullshift on two symbols, where g(y) has at least two different non-negative or non-positive real zeros, and ∣a∣ is sufficiently large. Moreover, it is shown that if g(y) has only simple real zeros, then for sufficiently large ∣a∣, there exists a uniformly hyperbolic invariant set on which F is topologically conjugate to the two-sided fullshift on d symbols.  相似文献   

14.
Let ut  uxx = h(t) in 0  x  π, t  0. Assume that u(0, t) = v(t), u(π, t) = 0, and u(x, 0) = g(t). The problem is: what extra data determine the three unknown functions {h, v, g} uniquely? This question is answered and an analytical method for recovery of the above three functions is proposed.  相似文献   

15.
In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r < 4n−1 and a rapid decrease for r > 4n−1. In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N0(l) can be described by a power law: N0(l)  lμ. The distance distributions P0(S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P0(S) = a + bS + cS2, and it is quite different from the random sequence.  相似文献   

16.
In this paper, we establish the formulas of the extermal ranks of the quaternion matrix expression f(X1, X2) = C7 ? A4X1B4 ? A5X2B5 where X1, X2 are variant quaternion matrices subject to quaternion matrix equations A1X1 = C1, A2X1 = C2, A3X1 = C3, X2B1 = C4, X2B2 = C5, X2B3 = C6. As applications, we give a new necessary and sufficient condition for the existence of solutions to some systems of quaternion matrix equations. Some results can be viewed as special cases of the results of this paper.  相似文献   

17.
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ? λ ? 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.  相似文献   

18.
The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate positions such that at least one codeword has a nonzero entry in each of these coordinate position. The rth generalized Hamming weight dr(C), 1  r  k, of C is defined as the minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence (d1(C), d2(C),  , dk(C)) is called the Hamming weight hierarchy (HWH) of C. The HWH, dr(C) = n  k + r;  r = 1, 2 , …, k, characterizes maximum distance separable (MDS) codes. Therefore the matrix characterization of MDS codes is also the characterization of codes with the HWH dr(C) = n  k + r; r = 1, 2,  , k. A linear code C with systematic check matrix [IP], where I is the (n  k) × (n  k) identity matrix and P is a (n  k) × k matrix, is MDS iff every square submatrix of P is nonsingular. In this paper we extend this characterization to linear codes with arbitrary HWH. Using this result, we characterize Near-MDS codes, Near-Near-MDS (N2-MDS) codes and Aμ-MDS codes. The MDS-rank of C is the smallest integer η such that dη+1 = n  k + η + 1 and the defect vector of C with MDS-rank η is defined as the ordered set {μ1(C), μ2(C), μ3(C),  , μη(C), μη+1(C)}, where μi(C) = n  k + i  di(C). We call C a dually defective code if the defect vector of the code and its dual are the same. We also discuss matrix characterization of dually defective codes. Further, the codes meeting the generalized Greismer bound are characterized in terms of their generator matrix. The HWH of dually defective codes meeting the generalized Greismer bound are also reported.  相似文献   

19.
In this paper, we deal with the existence and asymptotic behavior of traveling waves for nonlocal diffusion systems with delayed monostable reaction terms. We obtain the existence of traveling wave front by using upper-lower solutions method and Schauder’s fixed point theorem for c > c1(τ) and using a limiting argument for c = c1(τ). Moreover, we find a priori asymptotic behavior of traveling waves with the help of Ikehara’s Theorem by constructing a Laplace transform representation of a solution. Especially, the delay can slow the minimal wave speed for ?2f(0, 0) > 0 and the delay is independent of the minimal wave speed for ?2f(0, 0) = 0.  相似文献   

20.
In many real-life situations, we know the probability distribution of two random variables x1 and x2, but we have no information about the correlation between x1 and x2; what are the possible probability distributions for the sum x1 + x2? This question was originally raised by A.N. Kolmogorov. Algorithms exist that provide best-possible bounds for the distribution of x1 + x2; these algorithms have been implemented as a part of the efficient software for handling probabilistic uncertainty. A natural question is: what if we have several (n > 2) variables with known distribution, we have no information about their correlation, and we are interested in possible probability distribution for the sum y = x1 +  + xn? Known formulas for the case n = 2 can be (and have been) extended to this case. However, as we prove in this paper, not only are these formulas not best-possible anymore, but in general, computing the best-possible bounds for arbitrary n is an NP-hard (computationally intractable) problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号