首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Algebra》2002,247(2):509-540
Let Fm be a free group of a finite rank m  2 and let Xi, Yj be elements in Fm. A non-empty word w(x1,…,xn) is called a C-test word in n letters for Fm if, whenever (X1,…,Xn) = w(Y1,…,Yn)  1, the two n-typles (X1,…,Xn) and (Y1,…,Yn) are conjugate in Fm. In this paper we construct, for each n  2, a C-test word vn(x1,…,xn) with the additional property that vn(X1,…,Xn) = 1 if and only if the subgroup of Fm generated by X1,…,Xn is cyclic. Making use of such words vm(x1,…,xm) and vm + 1(x1,…,xm + 1), we provide a positive solution to the following problem raised by Shpilrain: There exist two elements u1, u2  Fm such that every endomorphism ψ of Fm with non-cyclic image is completely determined by ψ(u1), ψ(u2).  相似文献   

2.
3.
In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r < 4n−1 and a rapid decrease for r > 4n−1. In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N0(l) can be described by a power law: N0(l)  lμ. The distance distributions P0(S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P0(S) = a + bS + cS2, and it is quite different from the random sequence.  相似文献   

4.
We show that the simple matroid PG(n  1, q)\PG(k  1, q), for n  4 and 1  k  n  2, is characterized by a variety of numerical and polynomial invariants. In particular, any matroid that has the same Tutte polynomial as PG(n  1, q)\PG(k  1, q) is isomorphic to PG(n  1, q)\PG(k  1, q).  相似文献   

5.
《Journal of Algebra》1999,211(2):562-577
LetRbe a Krull ring with quotient fieldKanda1,…,aninR. If and only if theaiare pairwise incongruent mod every height 1 prime ideal of infinite index inRdoes there exist for all valuesb1,…,bninRan interpolating integer-valued polynomial, i.e., anf  K[x] withf(ai) = biandf(R)  R.IfSis an infinite subring of a discrete valuation ringRvwith quotient fieldKanda1,…,aninSare pairwise incongruent mod allMkv  Sof infinite index inS, we also determine the minimald(depending on the distribution of theaiamong residue classes of the idealsMkv  S) such that for allb1,…,bn  Rvthere exists a polynomialf  K[x] of degree at mostdwithf(ai) = biandf(S)  Rv.  相似文献   

6.
Let Xn denote the state of a device after n repairs. We assume that the time between two repairs is the time τ taken by a Wiener process {W(t), t ? 0}, starting from w0 and with drift μ < 0, to reach c  [0, w0). After the nth repair, the process takes on either the value Xn?1 + 1 or Xn?1 + 2. The probability that Xn = Xn?1 + j, for j = 1, 2, depends on whether τ ? t0 (a fixed constant) or τ > t0. The device is considered to be worn out when Xn ? k, where k  {1, 2, …}. This model is based on the ones proposed by Rishel (1991) [1] and Tseng and Peng (2007) [2]. We obtain an explicit expression for the mean lifetime of the device. Numerical methods are used to illustrate the analytical findings.  相似文献   

7.
Let n  1 be a fixed integer and let R be an (n + 1)!-torsion free 1-ring with identity element e. If F, d:R  R are two additive mappings satisfying F(xn+1) = F(x)(x1)n + xd(x)(x1)n−1 + x2d(x)(x1)n−2+  +xnd(x) for all x  R, then d is a Jordan 1-derivation and F is a generalized Jordan 1-derivation on R.  相似文献   

8.
《Journal of Complexity》1996,12(2):167-174
LetKbe a closed basic set inRngiven by the polynomial inequalities φ1≥ 0, . . . , φm≥ 0 and let Σ be the semiring generated by the φkand the squares inR[x1, . . . ,xn]. Schmüdgen has shown that ifKis compact then any polynomial function strictly positive onKbelongs to Σ. Easy consequences are (1)f≥ 0 onKif and only iffR++ Σ (Positivstellensatz) and (2) iff≥ 0 onKbutf∈ Σ then asdtends to 0+, in any representation off + das an element of Σ in terms of the φk, the squares and semiring operations, the integerN(d) which is the minimum over all representations of the maximum degree of the summands must become arbitrarily large. A one-dimensional example is analyzed to obtain asymptotic lower and upper bounds of the formcd−1/2N(d) ≤Cd−1/2log (1/d).  相似文献   

9.
It is known that quantum computers yield a speed-up for certain discrete problems. Here we want to know whether quantum computers are useful for continuous problems. We study the computation of the integral of functions from the classical Hölder classes Fkαd on [0, 1]d and define γ by γ=(k+α)/d. The known optimal orders for the complexity of deterministic and (general) randomized methods are comp(Fkαdε)≍ε−1/γ and comprandom(Fkαdε)≍ε−2/(1+2γ). For a quantum computer we prove compquantquery(Fkαdε)≍ε−1/(1+γ) and compquant(Fkαdε)⩽−1/(1+γ)(log ε−1)1/(1+γ). For restricted Monte Carlo (only coin tossing instead of general random numbers) we prove compcoin(Fkαdε)⩽−2/(1+2γ)(log ε−1)1/(1+2γ). To summarize the results one can say that    there is an exponential speed-up of quantum algorithms over deterministic (classical) algorithms, if γ is small;    there is a (roughly) quadratic speed-up of quantum algorithms over randomized classical methods, if γ is small.  相似文献   

10.
In this paper, we study the nonlinear dispersive K(m, n) equations: ut + (um)x  (un)xxx = 0 which exhibit solutions with solitary patterns. New exact solitary solutions are found. The two special cases, K(2, 2) and K(3, 3), are chosen to illustrate the concrete features of the decomposition method in K(m, n) equations. The nonlinear equations K(m, n) are studied for two different cases, namely when m = n being odd and even integers. General formulas for the solutions of K(m, n) equations are established.  相似文献   

11.
For fixed positive integer k, let En denote the set of lattice paths using the steps (1, 1), (1,  1), and (k, 0) and running from (0, 0) to (n, 0) while remaining strictly above the x-axis elsewhere. We first prove bijectively that the total area of the regions bounded by the paths of En and the x-axis satisfies a four-term recurrence depending only on k. We then give both a bijective and a generating function argument proving that the total area under the paths of En equals the total number of lattice points on the x-axis hit by the unrestricted paths running from (0, 0) to (n  2, 0) and using the same step set as above.  相似文献   

12.
P-matrices play an important role in the well-posedness of a linear complementarity problem (LCP). Similarly, the well-posedness of a horizontal linear complementarity problem (HLCP) is closely related to the column-W property of a matrix k-tuple.In this paper we first consider the problem of generating P-matrices from a given pair of matrices. Given a matrix pair (D, F) where D is a square matrix of order m and matrix F has m rows, “what are the conditions under which there exists a matrix G such that (D + FG) is a P-matrix?”. We obtain necessary and sufficient conditions for the special case when the column rank of F is m ? 1. A decision algorithm of complexity O(m2) to check whether the given pair of matrices (D, F) is P-matrisable is obtained. We also obtain a necessary and an independent sufficient condition for the general case when rank(F) is less than m ? 1.We then generalise the P-matrix generating problem to the generation of matrix k-tuples satisfying the column-W property from a given matrix (k + 1)-tuple. That is, given a matrix (k + 1)-tuple (D1,  ,Dk, F), where Djs are square matrices of order m and F is a matrix having m rows, we determine the conditions under which the matrix k-tuple (D1 + FG1,  ,Dk + FGk) satisfies the column-W property. As in the case of P-matrices we obtain necessary and sufficient conditions for the case when rank(F) = m ? 1. Using these conditions a decision algorithm of complexity O(km2) to check whether the given matrix (k + 1)-tuple is column-W matrisable is obtained. Then for the case when rank(F) is less than m ? 1, we obtain a necessary and an independent sufficient condition.For a special sub-class of P-matrices we give a polynomial time decision algorithm for P-matrisability. Finally, we obtain a geometric characterisation of column-W property by generalising the well known separation theorem for P-matrices.  相似文献   

13.
We are concerned with a variation of the knapsack problem as well as of the knapsack sharing problem, where we are given a set of n items and a knapsack of a fixed capacity. As usual, each item is associated with its profit and weight, and the problem is to determine the subset of items to be packed into the knapsack. However, in the problem there are s players and the items are divided into s + 1 disjoint groups, Nk (k = 0, 1,  , s). The player k is concerned only with the items in N0  Nk, where N0 is the set of ‘common’ items, while Nk represents the set of his own items. The problem is to maximize the minimum of the profits of all the players. An algorithm is developed to solve this problem to optimality, and through a series of computational experiments, we evaluate the performance of the developed algorithm.  相似文献   

14.
To interpolate function, f(x), a ? x ? b, when we have some information about the values of f(x) and their derivatives in separate points on {x0, x1,  , xn} ? [a, b], the Hermit interpolation method is usually used. Here, to solve this kind of problems, extended rational interpolation method is presented and it is shown that the suggested method is more efficient and suitable than the Hermit interpolation method, especially when the function f(x) has singular points in interval [a, b]. Also for implementing the extended rational interpolation method, the direct method and the inverse differences method are presented, and with some examples these arguments are examined numerically.  相似文献   

15.
《Journal of Algebra》2002,247(2):577-615
For coherent families of crystals of affine Lie algebras of type B(1)n, D(1)n, A(2)2n, and D(2)n + 1 we describe the combinatorial R matrix using column insertion algorithms for B, C, D Young tableaux. This is a continuation of previous work by the authors (2000, in “Physical Combinatorics” (M. Kashiwara and T. Miwa, Eds.), Birkhäuser, Boston).  相似文献   

16.
In this paper we demonstrate new approach that can help in calculation of electrostatic potential of a fractal (self-similar) cluster that is created by a system of charged particles. For this purpose we used the simplified model of a plane dendrite cluster [1] that is generated by a system of the concentric charged rings located in some horizontal plane (see Fig. 2). The radiuses and charges of the system of concentric rings satisfy correspondingly to relationships: rn = r0ξn and en = e0bn, where n determines the number of a current ring. The self-similar structure of the system considered allows to reduce the problem to consideration of the functional equation that similar to the conventional scaling equation. Its solution represents itself the sum of power-low terms of integer order and non-integer power-law term multiplied to a log-periodic function [5], [6]. The appearance of this term was confirmed numerically for internal region of the self-similar cluster (r0  r  rN−1), where r0, rN−1 determine the smallest and the largest radiuses of the limiting rings correspondingly. The results were obtained for homogeneously (b > 0) and heterogeneously (b < 0) charged rings. We expect that this approach allows to consider more complex self-similar structures with different geometries of charge distributions.  相似文献   

17.
A function which is homogeneous in x, y, z of degree n and satisfies Vxx + Vyy + Vzz = 0 is called a spherical harmonic. In polar coordinates, the spherical harmonics take the form rnfn, where fn is a spherical surface harmonic of degree n. On a sphere, fn satisfies ▵ fn + n(n + 1)fn = 0, where ▵ is the spherical Laplacian. Bounded spherical surface harmonics are well studied, but in certain instances, unbounded spherical surface harmonics may be of interest. For example, if X is a parameterization of a minimal surface and n is the corresponding unit normal, it is known that the support function, w = X · n, satisfies ▵w + 2w = 0 on a branched covering of a sphere with some points removed. While simple in form, the boundary value problem for the support function has a very rich solution set. We illustrate this by using spherical harmonics of degree one to construct a number of classical genus-zero minimal surfaces such as the catenoid, the helicoid, Enneper's surface, and Hennenberg's surface, and Riemann's family of singly periodic genus-one minimal surfaces.  相似文献   

18.
《Journal of Complexity》1998,14(2):257-299
First we study asymptotically fast algorithms for rectangular matrix multiplication. We begin with new algorithms for multiplication of ann×nmatrix by ann×n2matrix in arithmetic timeO(nω),ω=3.333953…, which is less by 0.041 than the previous record 3.375477…. Then we present fast multiplication algorithms for matrix pairs of arbitrary dimensions, estimate the asymptotic running time as a function of the dimensions, and optimize the exponents of the complexity estimates. For a large class of input matrix pairs, we improve the known exponents. Finally we show three applications of our results:   (a) we decrease from 2.851 to 2.837 the known exponent of the work bounds for fast deterministic (NC) parallel evaluation of the determinant, the characteristic polynomial, and the inverse of ann×nmatrix, as well as for the solution to a nonsingular linear system ofnequations,   (b) we asymptotically accelerate the known sequential algorithms for the univariate polynomial composition mod xn, yielding the complexity boundO(n1.667) versus the old record ofO(n1.688), and for the univariate polynomial factorization over a finite field, and   (c) we improve slightly the known complexity estimates for computing basic solutions to the linear programming problem withmconstraints andnvariables.  相似文献   

19.
20.
《Journal of Complexity》1998,14(4):448-453
LetP⊂[0, 1]dbe ann-point set and letw: P→[0, ∞) be a weight function withw(P)=∑zP w(z)=1. TheL2-discrepancy of the weighted set (P, w) is defined as theL2-average ofD(x)=vol(Bx)−w(PBx) overx∈[0, 1]d, where vol(Bx) is the volume of thed-dimensional intervalBx=∏dk=1 [0, xk). The exponent of discrepancyp* is defined as the infimum of numberspsuch that for all dimensionsd⩾1 and allε>0 there exists a weighted set of at mostppoints in [0, 1]dwithL2-discrepancy at mostε, whereK=K(p) is a suitable number independent ofεandd. Wasilkowski and Woźniakowski proved thatp*⩽1.4779, by combining known bounds for the error of numerical integration and using their relation toL2-discrepancy. In this note we observe that a careful treatment of a classical lower- bound proof of Roth yieldsp*⩾1.04882, and by a slight modification of the proof we getp*⩾1.0669. Determiningp* exactly seems to be quite a difficult problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号