首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dense monolayers of [Ru(dpp)2Qbpy]2+, where dpp is 4,4'-diphenylphenanthroline and Qbpy is 2,2':4,4' ':4'4' '-quarterpyridyl, have been formed by spontaneous adsorption onto clean platinum microelectrodes. The cyclic voltammetry of these monolayers is nearly ideal, and three redox states are accessible over the potential range of +/-1.3 V. Chronoamperometry conducted on the microsecond time scale has been used to probe the dynamics of heterogeneous electron transfer and indicates that the standard heterogeneous electron-transfer rate constant, k degrees , is approximately 106 s-1. The metal complex emits at approximately 600 nm in fluid and solid solution as well as when bound to a platinum electrode surface within a dense monolayer. In the case of the monolayers, it appears that the excited states are not completely deactivated by radiationless energy transfer to the metal because electronic coupling between the adsorbates and the electrode is weak. The dynamics of lateral electron transfer between the electronically excited Ru2+* and ground-state Ru3+ species has been explored by measuring the luminescence intensity after defined quantities of Ru3+ have been produced electrochemically within the monolayer. The rate of lateral electron transfer is between 8 x 106 and 3 x 108 M-1 s-1, indicating efficient electron transfer between adsorbates in close-packed assemblies. Voltammetry conducted at megavolt per second scan rates has been used to directly probe the redox properties of the electronically excited species.  相似文献   

2.
A series of fully functionalized poly(amidoamine) dendrimers with 4-carboxy-2,2,6,6-tetramethylpiperidin-1-yloxyl end groups were prepared. Cyclic voltammetric studies indicated that the pendant nitroxyl radical end groups are non-interacting electrochemically equivalent redox centers, which are oxidizable at the same potential. The results of controlled-potential electrolysis of the dendrimers showed that all the nitroxyl radical groups at the periphery of the dendrimers are accessible to the electrode surface for electron transfer.  相似文献   

3.
The slow voltammetry was taken on the paste electrode consisting of polyaniline powder and Teflon binder which was applied to pyrographite disc electrode. The potential cycle range was +0.6V→ ? 0.2V→+0.8V→+0.6V vs. SCE. It was found that the voltammetry curves are similar for both polyanilines obtained chemically and electrochemically. The difference of the voltammetry curves in various acids might be attributed to some exchange of doping anions in polyaniline. The first redox couple peaks shifted to positive potential direction with increase of pH and it might be associated with the proton addition-elimination reaction. It was shown that polyaniline prepared from very dilute or concentrated acid solution was electrochemically inactive.  相似文献   

4.
Electron transfer is known to be an important step in the sequestering of iron by cellular ferritin. In this work, direct electron transfer between ferritin and a gold electrode was performed in order to probe its electron transfer kinetics. Gold electrodes were modified by the formation of self-assembled monolayers of 3-mercapto-propionic acid on the gold surface. Cyclic voltammetry using these electrodes shows that ferritin exhibits slow electron transfer kinetics at low potentials, yet fairly well-defined current—potential curves. In addition, the voltammetry indicates that adsorption of ferritin precedes the electron transfer step. Controlled potential electrolysis measurements yielded an n-value of 1910 electrons transferred per mole of ferritin. Cyclic voltammetry of a solution containing ferritin as well as nitrilotriacetate yields no electrolytic currents at potentials where the iron—nitrilotriacetate complex undergoes redox reactions, indicating that the currents observed in the voltammetry of ferritin were not due to free iron in the ferritin sample. In addition, the voltammetry of iron-free ferritin (apoferritin) did not yield appreciable currents, providing additional support to the suggestion that the observed voltammetric currents were due to the redox reactions of ferritin iron. Self-assembled monolayers containing carboxylate end groups effectively promoted the direct electron transfer of ferritin at a gold electrode, thus demonstrating that the electron transfer mechanisms of ferritin can now be probed electrochemically.  相似文献   

5.
A synthetic redox probe structurally related to natural pyridoacridones was designed and electrochemically characterised. These heterocycles behave as DNA intercalators due to their extended planar structure that promotes stacking in between nucleic acid base pairs. Electrochemical characterization by cyclic voltammetry revealed a quasi-reversible electrochemical behaviour occurring at a mild negative potential in aqueous solution. The study of the mechanism showed that the iminoquinone redox moiety acts similarly to quinone involving a two-electron reduction coupled with proton transfer. The easily accessible potential region with respect to aqueous electro-inactive window makes the pyridoacridone ring suitable for the indirect electrochemical detection of chemically unlabelled DNA. Its usefulness as electrochemical hybridization indicator was assessed on immobilised DNA and compared to doxorubicin. The voltamperometric response of the intercalator acts as an indicator of the presence of double-stranded DNA at the electrode surface and allows the selective transduction of immobilised oligonucleotide hybridization at both macro- and microscale electrodes.  相似文献   

6.
Surface reactions of uniformly adsorbed redox molecules at working electrode surface are seen as adequate models to studying chemical reactivity of many lipophilic enzymes. When considered under pulse voltammetric techniques, these systems show several uncommon features, whose origin is still not completely clear. The phenomena of “quasireverible maximum”, “splitting” of the net peak in square‐wave voltammetry, and the very steep descent of Faradaic currents of simple surface redox reactions exhibiting fast electron transfer are just some of the features that make these systems quite interesting for further elaborations. In this work, we present a set of theoretical calculations under conditions of square‐wave voltammetry in order try to explain some of aforementioned phenomena. The major goal of our work is to get insight to some voltammetric and chrono‐amperometric features of two considered surface reactions, i. e. (1) the “simple” surface redox reaction, and (2) surface redox reaction coupled to follow‐up irreversible chemical reaction of electrochemically generated redox species (or surface ECirr). We focus on the role of created Red(ads) (here in the reduction pulses only) to the current components of calculated square‐wave voltammograms exhibiting fast electrode reaction. We show that the irreversible chemical removal of electrochemically generated Red(ads) species, created in the potential pulses where half‐reaction of reduction Ox(ads)+ne‐?→Red(ads) is “defined” to take place, causes significant increase of all square‐wave current components. The results presented in this work show how complex the chrono‐amperometric features of surface redox reactions under pulse voltammetric conditions might be. In addition, we point out that both half reactions of a given simple surface redox process can occur, at both, “only reduction” and “only oxidation” potential pulses in square‐wave voltammetry. This, in turn, contributes to the occurrence of many phenomena observed in simple protein‐film voltammetry reactions. The effects of chemical reaction rate to the features of calculated square‐wave voltammograms of surface ECirr systems with fast electrode reaction are reported for the first time in this work.  相似文献   

7.
In this paper, we report a spectroelectrochemical investigation of proton-coupled electron transfer in flavodoxin D. vulgaris Hildenborough (Fld). Poly-L-lysine is used to promote the binding of Fld to the nanocrystalline, mesoporous SnO(2) electrodes. Two reversible redox couples of the immobilized Fld are observed electrochemically and are assigned by spectroelectrochemistry to the quinone/semiquinone and semiquinone/hydroquinone couples of the protein's flavin mononucleotide (FMN) redox cofactor. Comparison with control data for free FMN indicates no contamination of the Fld data by dissociated FMN. The quinone/semiquinone and semiquinone/hydroquinone midpoint potentials (E(q/sq) and E(sq/hq)) at pH 7 were determined to be -340 and -585 mV vs Ag/AgCl, in good agreement with the literature. E(q/sq) exhibited a pH dependence of 51 mV/pH. The kinetics of these redox couples were studied using cyclic voltammetry, cyclic voltabsorptometry, and chronoabsorptometry. The semiquinone/quinone reoxidation is found to exhibit slow, potential-independent but pH-sensitive kinetics with a reoxidation rate constant varying from 1.56 s(-)(1) at pH 10 to 0.0074 s(-)(1) at pH 5. The slow kinetics are discussed in terms of a simple kinetics model and are assigned to the reoxidation process being rate limited by semiquinone deprotonation. It is proposed that this slow deprotonation step has the physiological benefit of preventing the undesirable loss of reducing equivalents which results from semiquinone oxidation to quinone.  相似文献   

8.
纳米TiO2电极在不同介质中的电化学行为   总被引:1,自引:0,他引:1  
纳米电极;电催化;纳米TiO2电极在不同介质中的电化学行为;循环伏安法;循环方波伏安法  相似文献   

9.
In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".  相似文献   

10.
 Solid microparticles of several different insoluble organic compounds were mechanically immobilized on the surface of graphite electrodes and immersed into a liquid electrolyte in order to study their electrochemical reactions. Cyclic staircase voltammetry and square-wave voltammetry were used. Quinhydrone was found to be a stable intermediate in the reversible redox reaction of solid quinone and hydroquinone on the electrode surface. The reaction occurs on the surface of the solid particle which is in contact with water. Indigo can be reduced to leucoindigo and oxidized to dehydroindigo in two separate reversible redox reactions. In strongly basic medium indigo dissolves in water upon electroreduction. A hydroacridine radical was detected as a stable intermediate in the electrochemically irreversible redox reaction of acridine and dihydroacridine. Famotidine can be electrooxidized and the product of this reaction can be electroreduced in two separate chemically irreversible reactions. Probucol is oxidized to a semiquinone radical which can be re-reduced in an electrochemically irreversible redox reaction. Propyl- thiouracil can be also oxidized to an unknown product which can be re-reduced in a chemically reversible, but slow solid state surface redox reaction. Reductions of solid thionicotinoylanilide and nicotinoylanilide are totally irreversible. Received September 22, 1998. Revision March 19, 1999.  相似文献   

11.
Catechol can be oxidized electrochemically to its corresponding o‐benzoquinone. The electrogenerated quinone can be deposited by cycling the potential at the surface of glassy carbon electrodes. We have studied the electrochemical features of films derived from catechol by cyclic voltammetry. The electrodeposited film shows stable reversible redox response, dependent on pH as anticipated for quinone/catechol functionalities. Glassy carbon electrodes covered with a film derived from catechol exhibit catalytic activity in the electrooxidation of NADH at a low potential. The catalytic current is proportional to the concentration of NADH over the range 0.02–0.34 mM.  相似文献   

12.
The cobalt-catalyzed cyclotrimerization of bis(4-pyridyl)acetylene affords hexakis(4-pyridyl)benzene in moderate yield. Alkylation with n-butyltriflate gives hexakis(4-(N-butylpyridylium))benzene triflate (1 6+), which can be reduced with Na/Hg in DMF to neutral 10. A single-crystal X-ray diffraction structure reveals that 1 0 has a chair-cyclohexane-like core and a [6]radialene structure. Cyclic voltammetry shows that 1 6+ is reversibly reduced to 1 2+ in one four-electron step and 1 2+ is reversibly reduced to 1 0 in one two-electron step. A reduction by four electrons at one potential is unprecedented for a molecule in which the electrochemically active centers are in electronic communication. The large structural transformation from 1 6+ to 1 0 is responsible for the "potential inversion" in the cyclic voltammetry, and DFT calculations suggest a possible structure for the stable intermediate 1 2+. A comparison is made to the electrochemistry and structural transformations in a previously prepared [4]radialene analogue of 1 0.  相似文献   

13.
Generation of a surface-confined redox mediator (RM) by an electrochemically triggered Michael addition reaction and the electrocatalytic properties of the mediator are described. Electrogenerated o-quinone undergoes Michael addition reaction with the self-assembled monolayer (SAM) of 4-thiouracil (4-TU) on a gold (Au) electrode and yields a surface-confined RM, 1-(3,4-dihydroxyphenyl)-4-mercapto-1H-pyrimidin-2-one (DPTU). The Michael addition reaction depends on the electrolysis potential and time, solution pH, and concentration of catechol (CA) used in the reaction. The redox mediator, DPTU, exhibits reversible redox response, characterstic of a surface-confined species at approximately 0.22 V in neutral pH. The anodic peak potential of DPTU shifts by 58+/-2 mV while changing the solution pH by one unit, suggesting that protons and electrons taking part in the redox reaction are in the ratio of 1:1. The apparent rate constant (ksapp) for the heterogeneous electron-transfer reaction of the RM was determined to be 114+/-5 s-1. The surface coverage (Gamma) of DPTU on the electrode surface was 8.2+/-0.1x10(-12) mol/cm2. DPTU shows excellent electrocatalytic activity toward oxidation of reduced nicotinamide adenine dinucleotide (NADH) with activation overpotential, which is approximately 600 mV lower than that observed at the unmodified Au electrode. The dipositive cations in the supporting electrolyte solution amplify the electrocatalytic activity of DPTU. A 2.5-fold enhancement in the catalytic current was observed in the presence of Ca2+ or Ba2+ ions. The sensitivity of the electrode toward NADH in the presence and absence of Ca2+ ions was 0.094+/-0.011 and 0.04+/-0.0071 nA cm-2 nM-1, respectively. A linear increase in the catalytic current was obtained up to the concentration of 0.8 mM, and the electrode can detect amperometrically as low as 25 nM of NADH in neutral pH.  相似文献   

14.
Protein‐film square‐wave voltammetry of uniformly adsorbed molecules of redox lipophilic enzymes is applied to study their electrochemical properties, when a reversible follow‐up chemical reaction is coupled to the electrochemically generated product of enzyme's electrode reaction. Theoretical consideration of this so‐called “surface ECrev mechanism” under conditions of square‐wave voltammetry has revealed several new aspects, especially by enzymatic electrode reactions featuring fast electron transfer. We show that the rate of chemical removal/resupply of electrochemically generated Red(ads) enzymatic species, shows quite specific features to all current components of calculated square‐wave voltammograms and affects the electrode kinetics. The effects observed are specific for this particular redox mechanism (surface ECrev mechanism), and they got more pronounced at high electrode kinetics of enzymatic reaction. The features of phenomena of “split net‐SWV peak” and “quasireversible maximum”, which are typical for surface redox reactions studied in square‐wave voltammetry, are strongly affected by kinetics and thermodynamics of follow‐up chemical reaction. While we present plenty of relevant voltammetric situations useful for recognizing this particular mechanism in square‐wave voltammetry, we also propose a new approach to get access to kinetics and thermodynamics of follow‐up chemical reaction. Most of the results in this work throw new insight into the features of protein‐film systems that are coupled with chemical reactions.  相似文献   

15.
Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.  相似文献   

16.
Polyfluorene (PF) film has been successfully electropolymerized at lower potential (0.91 V vs.Ag/AgCl) in the mixed electrolyte of boron trifluoride diethyl etherate and trifluoroacetic acid.The PF film is characterized to have about 10 repeat units and no presence of ketonic defect site.UV-vis and photoluminescent spectral studies indicate that the PF film is blue light emitting.From cyclic voltammetry and galvanostatic charge-discharge tests in 1 M lithium perchlorate/acetonitrile electrolyte,the polyfluorene/activated carbon electrode shows a specific capacitance of 227.1 F g-1 (per active layer mass) and reversible redox reaction at the potential of 1.4 V in a three electrode configuration.An asymmetric electrochemical capacitor based on this composite electrode and activated carbon electrode exhibits a specific energy of 14.7 Wh kg-1 (per active layer mass).These results indicate that electrochemically prepared polyfluorene could be used as energy storage component for electrochemical application.  相似文献   

17.
Ruthenium dioxide electrodes, prepared on a Pt substrate using coatings of PVC-RuO2 mixed in THF (designated as RuO2-PVC film electrode) have been studied for their redox behaviour in 1 M NaOH using variable scan cyclic voltammetry. The various redox transitions in the oxidation state of the central metal ion are characterized using electrochemical parameters such as peak potential, peak current, and surface charge. The effect of oxide preparation temperature, in the range 300–700 °C, on the redox characteristics has also been studied and correlated with the electrochemically active surface area (as measured using small amplitude cyclic voltammetry) and the true surface area (by the BET method). Received: 12 August 1997 / Accepted: 18 October 1999  相似文献   

18.
With the aim of modeling the arrangement of redox-active and photoactive components along the electron-transfer pathway of photosystem II, tetra- to nonanuclear transition metal complexes have been synthesized, comprising one, two, or three manganese ions, oxidizable phenolates, and tris(2,2'-bipyridyl)ruthenium(II)-type units as photosensitizers. These model complexes are considered to be mononuclear ([LnMn](PF6)m), dinuclear ([L1aMnIV2(mu-O)2](PF6)6), or trinuclear ([LnMnIIMnIIMnIILn](PF6)12) with respect to the number of manganese centers present. Electronic coupling between the manganese ions is strongly antiferromagnetic in the case of the di(mu-oxo)-dimanganese compound [L1aMnIV2(mu-O)2](PF6)6, where the "ligand" [H2L1a]4+ consists of two tris(bipyridyl)ruthenium(II)-type units covalentely bound to a bismacrocyclic Me2dtne backbone to which the manganese ions are coordinated via an additional phenolate oxygen (Me2dtne = 1,2-bis(4-methyl-1,4,7-triazacyclononyl)ethane). Weak antiferromagnetic coupling is observed in compounds [LnMnIIMnIIMnIILn](PF6)12, where the three metals are in a linear arrangement (face-sharing octahedral). They are bridged by three phenolate oxygens of each of the deprotonated "ligands" [H3Ln]6+, respectively. Each ligand [H3Ln]6+ (n = 1, 2) consists of a tacn ring with three pendent arm phenols which are each bound to a tris(bipyridyl)ruthenium(II)-type unit (tacn = 1,4,7-triazacyclononane). In these compounds several electron-transfer steps were detected by electrochemical methods which are assigned to different redox processes located at individual electrochemically active components (Mn, Ru, bipyridyl, phenolate). For example, in the "mononuclear" compounds [LnMn](PF6)m (n = 1 or 2) Mn(II), Mn(III), and Mn(IV) are accessible and three Ru(II) centers are reversibly oxidized to Ru(III), and in addition, the coordinated phenolate can be oxidized to a highly reactive, coordinated phenoxyl radical. In several cases very slow heterogeneous electron-transfer rates were observed for redox processes involving the manganese centers.  相似文献   

19.
As an illustration of how cyclic voltammetry can be used to unravel the mechanisms and kinetics of redox enzymes, the reductive dechlorination of trichloroethylene and tetrachloroethylene by a typical reductive dehalogenase, the tetrachloroethene reductive dehalogenase of Sulfurospirillum multivorans (formerly called Dehalospirillum multivorans), was investigated by means of several electrochemically generated cosubstrates. They comprised the monocation and the neutral form of methylviologen, the neutral form of benzylviologen, and cobaltocene. Cyclic voltammetry is used to produce the active form of the cosubstrate under controlled potential conditions. It shows large plateau-shaped catalytic responses, which are used to measure the kinetics of the enzymatic reaction as a function of the substrate and cosubstrate concentrations. The variation of the rate constant for the cosubstrate reaction with its standard potential shows the transition between two asymptotic behaviors, one in which the reaction is under diffusion control and the other in which it is under counter-diffusion control. Simple fitting of this plot allows an estimation of the standard potential of the electron acceptor center in the enzyme (E degrees = -0.57 V vs NHE).  相似文献   

20.
Short monodisperse oligo‐ (para‐phenyleneethynylene) (pOPE) units bearing laterally attached tetrathio‐substituted tetrathiofulvalene (TTF) units have been synthesised from functionalised aromatic building blocks by using the Sonogashira cross‐coupling methodology. The unusual redox properties of these TTF–pOPE conjugates were observed by employing electrochemical methods, such as cyclic voltammetry and exhaustive electrolysis. We found that formally one half of the TTF units in the pOPE monomer 1 , dimer 2 , and trimer 3 (with 2, 4, and 6 TTF units, respectively) are electrochemically silent during the first‐step oxidation at 0.49 V. We propose the formation of persistent mixed‐valence complexes from the TTF and TTF+. units present in an equal ratio. Such mixed‐valence dyads (single or multiple in the partially oxidised 1 – 3 ) exhibit an unusual stability towards oxidation until the potential of the second oxidation at 0.84 V is achieved. This finding suggests that below this potential the oxidation of the respective mix‐valence complexes is extremely slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号