首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
LiFePO_4表面碳包覆方法中碳源的碳化及碳源选择   总被引:1,自引:0,他引:1  
LiFePO4材料表面碳包覆可以有效地提高材料的电导率,从而进一步提高材料的容量和放电性能.但碳包覆所用的碳源不同,其效果也不尽相同.结合笔者实验室工作,分析了不同碳源的碳化过程,并结合碳包覆的工艺,对LiFePO4碳包覆方法中碳源的选择及碳包覆方法作了讨论.  相似文献   

2.
优化碳包覆对正极材料LiFePO4/C高倍率性能的影响   总被引:2,自引:0,他引:2  
碳包覆层的结构和形态对LiFePO4正极材料的电子电导率影响很大. 本文以聚丙烯和葡萄糖为碳源, 二茂铁为催化剂前驱体, 采用原位固相法合成LiFePO4/C复合材料, 并对其微观结构和形貌, 碳的结构与含量, 电化学性能进行分析. 结果表明, 聚丙烯热解形成的碳包覆层石墨化程度高, 可提高材料的高倍率放电性能. 二茂铁的加入有助于优化包覆层的碳结构. 制备的LiFePO4/C复合材料具有优异的高倍率电化学性能, 10C (1C=170 mA·g-1)放电比容量达到145 mAh·g-1.  相似文献   

3.
LiFePO4电极的倍率特性与材料的粒度和电子导电性有很大关系.采用共沉淀方法,调控预处理温度,将3种不同尺寸的FePO4前驱体通过表面修饰对-羟基苯甲酸的聚合物,可合成不同尺度的LiFePO4/C材料,分别为80 nm、200nm和1μm.纳米尺度LiFePO4-a/C电极,30C放电比容量达到了100 mAh·g-1,而微米级LiFePO4-c/C电极放电比容量仅为54mAh·g-1.均一碳包覆的LiFePO4/C电极表现出强抗氧化性,不仅提高其导电性,还可防止材料氧化.  相似文献   

4.
徐土根  王连邦  李晟  马淳安 《化学学报》2009,67(20):2275-2278
磷酸铁锂作为动力锂离子电池的正极材料正逐渐走向市场.以Li3PO4,FePO4,Fe粉以及乙醇为原料,采用高温热分解方法成功地制得乙醇碳包覆的LiFePO4正极材料.实验结果表明,该LiFePO4/C材料颗粒均匀,分散性好,粒径大约在200nm~1μm之间,颗粒表面被碳包覆,颗粒之间由碳纤维连接.该正极材料首次放电容量达137mAh·g-1,首次充放电库仑效率在95%以上,50次循环后,放电容量基本不衰减,显示出良好的循环稳定性和可逆性.本研究降低了锂离子电池的生产成本,显示了良好的工业化应用前景.  相似文献   

5.
掺碳制备锂离子电池正极材料LiFePO4   总被引:3,自引:0,他引:3  
采用固相法合成LiFePO4和掺碳的LiFePO4,并对不同掺碳量的LiFePO4进行电化学性能测试,室温条件下,在0.1 C倍率下充放电,样品d(ωC=8.5%)的初始放电容量为151.7 mA·h/g.10次循环后,其放电比容量仍有149.5 mA·h/g,容量损失较小.这表明,在合适的制备工艺条件下,掺碳能获得结构稳定、电化学性能良好的锂离子电池正极材料LiFePO4.  相似文献   

6.
新型碳热还原法制备复合正极材料LiFePO4/C   总被引:2,自引:0,他引:2  
刘素琴  龚本利  张戈 《合成化学》2007,15(2):147-149,164
以FePO4为前驱体,采用碳热还原法合成了复合正极材料LiFePO4/C。考察了煅烧温度、煅烧时间,碳含量等因素对LiFePO4组成和电化学的影响,结果表明,600℃煅烧24 h,碳含量为10%时,LiFePO4具有最佳的电化学性能,其首次放电容量为146 mAh.g-1,循环15次后容量还维持在141 mAh.g-1。  相似文献   

7.
以三甘醇为还原剂,Li2CO3和三价铁源FePO4为原料,通过多元醇还原法在低于300℃下直接制备了结晶良好的纯相LiFePO4,无须后续热处理。0.1C首次放电比容量为140.5mAh·g-1。为了进一步改善纯相LiFePO4的电导率,以聚乙烯醇为碳源,在700℃下热处理进行了碳包覆改性,获得了LiFePO4/C复合正极材料。合成的LiFePO4/C在0.1C下放电容量为155mAh·g-1,5C倍率下放电比容量保持在125mAh·g-1,具有很好的倍率性能和循环稳定性。  相似文献   

8.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

9.
一氧化碳还原法制备磷酸铁锂—反应机理和动力学   总被引:1,自引:0,他引:1  
陈赟华  杨勇 《电化学》2008,14(4):388
由CO还原FePO4和LiOH前驱体合成LiFePO4正极材料,应用XRD、SEM表征材料结构和形貌、充放电曲线测试电化学性能.结果表明,LiOH过量5%合成的LiFePO4样品颗粒度约200 nm,包覆碳后LiFePO4电极0.1C放电容量可达158 mAh/g.高温现场XRD对该合成反应作实时监控,借助时间分辨图谱分析,检测出Li3Fe2(PO4)3中间物.动力学研究表明成核与生长是该合成过程的速控步骤,反应活化能为89.44 kJ/mol.  相似文献   

10.
锂离子电池正极材料掺杂LiFePO4的报道已很多,而涉及掺杂LiFePO4的表面成分及结构的研究仍很少见.本文采用溶剂热法一步制得了表面富Al的LiFePO4正极材料.TEM测试证实LiFePO4的表面形成均匀的无定型包覆层;俄歇电子能谱和软X射线吸收谱均表明其表面的包覆层为部分Al替代Fe的LiFe1-x Alx PO4.表面富Al(x=0.02)的LiFePO4显示了较好的电化学倍率性能和低温性能,-10oC下充放电,电压范围2.2~4.2 V、0.1C倍率,电极的放电比容量为98 mAh·g-1,0.5C倍率放电比容量可达70 mAh·g-1.这归因于Al的加入改变了材料体相及表面的电子结构,增加了体相电子的传导及表面离子的传导.  相似文献   

11.
Lithium iron phosphate (LiFePO4) doped with magnesium was hydrothermally synthesized from commercial LiOH, FeSO4, H3PO4 and MgSO4 with glucose as carbon precursor in aqueous solution. The samples were characterized by X-ray powder diffraction, scanning electron microscopy and constant charge-discharge cycling. The results show that the synthesized powders have been in situ coated with carbon precursor produced from caramel reaction of glucose. At ambient temperature (28±2℃), the electrochemical performances of LiFePO4 prepared exhibit the high discharge capacity of 135 mAh g^-1 at 5C and good capacity retention of 98% over 90 cycles. The excellent electrochemical performances should be correlated with the intimate contact between carbon and LiFePO4 primary and secondary particles, resulting from the in situ formation of carbon precursor/carbon, leading to the increase in conductivity of LiFePO4.  相似文献   

12.
以偏硼酸锂和草酸亚铁为原料,采用固相反应,合成了用于动力锂离子电池新型正极材料LiFeBO3,并用乙丙共聚物(EPM)对该材料进行包覆保护处理;采用XRD、SEM和元素分析等测试技术对样品进行表征。 实验表明,LiFeBO3具有较高的放电重量比容量,而且包覆EPM后的硼酸铁锂具有更好的电化学性能,5%EPM包覆的硼酸锂首次放电容量达190 mA·h/g,0.5 C下充放电循环50次后容量衰减只有4.2%。  相似文献   

13.
以Fe2O3为铁源原料, 利用热还原法成功地制备了LiFePO4/C复合材料. 用XRD以及SEM对材料的晶体结构以及表面形貌进行了表征. 通过循环伏安和充放电测试研究了材料的电化学性能. 研究结果表明, 于700 ℃下制备的LiFePO4/C复合材料在0.1C的倍率下可以得到放电容量144.8 mA·h/g, 在循环160次后, 容量仍保持在141.4 mA·h/g. 这种以廉价的Fe2O3代替目前常用的二价铁盐原料方法, 具有减少LiFePO4合成成本的优点.  相似文献   

14.
Olivine-type LiFePO4 appears to be the best candidate for large size Lithium ion batteries compared with conventional cathode materials such as LiCoO2, LiNiO2 and LiMnO4 based on cost,environmental benign and safety. In addition, LiFePO4 has a large theoretical capacity of 170 mAhg-1, good cycle stability, and a flat discharge potential of 3.4V versus Li/Li+. However, its low ionic/electronic conductivity limits the electrochemical prosperities of this material, especially its rate capability. Many efforts have been devoted to increase and optimize the conductivity of LiFePO4 besides minimizing the particle size and making an intimate carbon coating around the particles, though it is not the way to change intrinsically the electrical conductivity of LiFePO4.In this research, LiFePO4 was synthesized by solid-state reaction. A discharge capacity of around 110mAhg-1 was achieved under a low current density of 17mAg-1 at room temperature. In order to compounds were prepared, respectively. As an example, LiFe0.9Ti0.1PO4 had the same XRD pattern as LiFePO4 but more developed crystalline intensity. The charge-discharge capacities of LiFe0.9Ti 0.1PO4 at the first cycle were 134mAhg-1 and 129 mAhg-1, respectively. The efficiency of charge-discharge was larger than 96%. A reversible capacity of 110 mAhg-1 was obtained after 20cycles and the capacity retention was over 85%. Moreover, the discharge voltage flat was maintained at 3.4V verse Li/Li+ after the first cycle. At even higher rates, it also exhibited good electrochemical performances.  相似文献   

15.
高比能LiFePO4的制备及性能研究   总被引:1,自引:0,他引:1  
应用液相沉淀法-固相烧结法制备高密度的LiFePO4/C及纯相LiFePO4.X射线衍射、扫描电镜、傅立叶红外光谱仪、电化学性能测试表明:该样品具有单一的橄榄石结构和3.4 V左右的放电平台,掺碳的LiFe-PO4具有更优良的性能,粒度较小粒径分布均匀,振实密度达1.46 g/cm3,0.1C首次放电比容量为144.6mAh/g,循环20次后容量保持率为93.2%,1C倍率首次放电比容量为133.5 mAh/g,循环20次后容量下降8.76%.  相似文献   

16.
白莹  杨觉明  卿春波  张伟风 《电化学》2011,17(3):334-338
应用水热法在200 oC下合成了橄榄石结构LiFePO4正极材料,合成过程中添加蔗糖作为包覆用碳源,并同时掺Co. 实验表明,包覆碳掺Co能更有效地改善LiFePO4电极的电化学性能. 样品可后退火处理,400 oC 退火LiFePO4样品结晶度和颗粒尺寸均影响了其电化学性能,包覆碳掺CoLiFePO4样品可使颗粒细化,改善电极倍率性能.  相似文献   

17.
IntroductionLithium ion batteries are key components of mobiletelephones and portable computers.Among the knownLi-intercalation materials for lithium ion battery cath-odes,LiCoO2,LiNiO2,and LiMn2O4have been stud-ied extensively[1—3].LiCoO2is nowused in c…  相似文献   

18.
在水热条件下,制备了水合碱式磷酸铁微球,500 oC焙烧后生成直径为5μm的碱式磷酸铁,接着与碳酸锂一起焙烧后生成了球形磷酸铁锂.我们的方法可以有效地控制所获得产物的尺寸和形貌,同时在产物表面形成均匀碳包覆,改善了磷酸铁锂的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号