首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
The energy and electron transfer processes taking place in binuclear polypyridine complexes of ruthenium and osmium based on the tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' "-3' "-j]phenazine bridging ligand (tpphz) have been investigated by ultrafast absorption spectroscopy. In the binuclear complexes, each chromophore is characterized by two spectrally distinguishable metal-to-ligand charge transfer (MLCT) excited states: MLCT1 (with promoted electron mainly localized on the bpy-like portion of tpphz, higher energy) and MLCT0 (with promoted electron mainly localized on the pyrazine-like portion of tpphz, lower energy). In the homodinuclear complexes Ru(II)-Ru(II) and Os(II)-Os(II), MLCT1 --> MLCT0 relaxation (intraligand electron transfer) is observed, with strongly solvent-dependent kinetics (ca. 10(-10) s in CH2Cl2, ca. 10(-12) s in CH3CN). In the heterodinuclear Ru(II)-Os(II) complex, *Ru(II)-Os(II) --> Ru(II)-Os(II) energy transfer takes place by two different sequences of time-resolved processes, depending on the solvent: (a) in CH2Cl2, ruthenium-to-osmium energy transfer at the MLCT1 level followed by MLCT1 --> MLCT0 relaxation in the osmium chromophore, (b) in CH3CN, MLCT1 --> MLCT0 relaxation in the ruthenium chromophore followed by osmium-to-ruthenium metal-to-metal electron transfer. In the mixed-valence Ru(II)-Os(III) species, the *Ru(II)-Os(III) --> Ru(III)-Os(II) electron transfer quenching is found to proceed by two consecutive steps in CH3CN: intraligand electron transfer followed by ligand-to-metal electron transfer. On a longer time scale, charge recombination leads back to the ground state. Altogether, the results show that the tpphz bridge plays an active mechanistic role in these systems, efficiently mediating the transfer processes with its electronic levels.  相似文献   

2.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

3.
The effects of ligand perdeuteration on the metal-to-ligand charge-transfer (MLCT) excited-state emission properties at 77 K are described for several [Ru(L)(4)bpy](2+) complexes in which the emission process is nominally [uIII,bpy-] --> [RuII,bpy]. The perdeuteration of the 2,2'-bipyridine (bpy) ligand is found to increase the zero-point energy differences between the ground states and MLCT excited states by amounts that vary from 0 +/- 10 to 70 +/- 10 cm(-1) depending on the ligands L. This indicates that there are some vibrational modes with smaller force constants in the excited states than in the ground states for most of these complexes. These blue shifts increase approximately as the energy difference between the excited and ground states decreases, but they are otherwise not strongly correlated with the number of bipyridine ligands in the complex. Careful comparisons of the [Ru(L)(4)(d(8)-bpy)](2+) and [Ru(L)(4)(h(8)-bpy](2+) emission spectra are used to resolve the very weak vibronic contributions of the C-H stretching modes as the composite contributions of the corresponding vibrational reorganizational energies. The largest of these, 25 +/- 10 cm(-1), is found for the complexes with L = py or bpy/2 and smaller when L = NH(3). Perdeuteration of the am(m)ine ligands (NH(3), en, or [14]aneN(4)) has no significant effect on the zero-point energy difference, and the contributions of the NH stretching vibrational modes to the emission band shape are too weak to resolve. Ligand perdeuteration does increase the excited-state lifetimes by a factor that is roughly proportional to the excited-state-ground-state energy difference, even though the CH and NH vibrational reorganizational energies are too small for nuclear tunneling involving these modes to dominate the relaxation process. It is proposed that metal-ligand skeletal vibrational modes and configurational mixing between metal-centered, bpy-ligand-centered, and MLCT excited states are important in determining the zero-point energy differences, while a large number of different combinations of relatively low-frequency vibrational modes must contribute to the nonradiative relaxation of the MLCT excited states.  相似文献   

4.
The absorption, emission, and infrared spectra, metal (Ru) and ligand (PP) half-wave potentials, and ab initio calculations on the ligands (PP) are compared for several [L(n)()Ru(PP)](2+) and [[L(n)Ru]dpp[RuL'(n)]](4+) complexes, where L(n) and L'(n) = (bpy)(2) or (NH(3))(4) and PP = 2,2'-bipyridine (bpy), 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), or 2,3-bis(2pyridyl)benzoquinoxaline (dpb). The energy of the metal-to-ligand charge-transfer (MLCT) absorption maximum (hnu(max)) varies in nearly direct proportion to the difference between Ru(III)/Ru(II) and (PP)/(PP)(-) half-wave potentials, DeltaE(1/2), for the monometallic complexes but not for the bimetallic complexes. The MLCT spectra of [(NH(3))(4)Ru(dpp)](2+) exhibit three prominent visible-near-UV absorptions, compared to two for [(NH(3))(4)Ru(bpy)](2+), and are not easily reconciled with the MLCT spectra of [[(NH(3))(4)Ru]dpp[RuL(n)]](4+). The ab initio calculations indicate that the two lowest energy pi orbitals are not much different in energy in the PP ligands (they correlate with the degenerate pi orbitals of benzene) and that both contribute to the observed MLCT transitions. The LUMO energies calculated for the monometallic complexes correlate strongly with the observed hnu(max) (corrected for variations in metal contribution). The LUMO computed for dpp correlates with LUMO + 1 of pyrazine. This inversion of the order of the two lowest energy pi orbitals is unique to dpp in this series of ligands. Configurational mixing of the ground and MLCT excited states is treated as a small perturbation of the overall energies of the metal complexes, resulting in a contribution epsilon(s) to the ground-state energy. The fraction of charge delocalized, alpha(DA)(2), is expected to attenuate the reorganizational energy, chi(reorg), by a factor of approximately (1 - 4alpha(DA)(2) + alpha(DA)(4)), relative to the limit where there is no charge delocalization. This appears to be a substantial effect for these complexes (alpha(DA)(2) congruent with 0.1 for Ru(II)/bpy), and it leads to smaller reorganizational energies for emission than for absorption. Reorganizational energies are inferred from the bandwidths found in Gaussian analyses of the emission and/or absorption spectra. Exchange energies are estimated from the Stokes shifts combined with perturbation--theory-based relationship between the reorganizational energies for absorption and emission values. The results indicate that epsilon(s) is dominated by terms that contribute to electron delocalization between metal and PP ligand. This inference is supported by the large shifts in the N-H stretching frequency of coordinated NH(3) as the number of PP ligands is increased. The measured properties of the bpy and dpp ligands seem to be very similar, but electron delocalization appears to be slightly larger (10-40%) and the exchange energy contributions appear to be comparable (e.g., approximately 1.7 x 10(3) cm(-1) in [Ru(bpy)(2)dpp](2+) compared to approximately 1.3 x 10(3) cm(-1) in the bpy analogue).  相似文献   

5.
Supramolecular bimetallic Ru(II)/Pt(II) complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) and their synthons [(tpy)Ru(L)(BL)](n)()(+) (where L = Cl(-), CH(3)CN, or PEt(2)Ph; tpy = 2,2':6',2'-terpyridine; and BL = 2,2'-bipyrimidine (bpm) or 2,3-bis(2-pyridyl)pyrazine (dpp)) have been synthesized and studied by cyclic voltammetry, electronic absorption spectroscopy, mass spectral analysis, and (31)P NMR. The mixed-metal bimetallic complexes couple phosphine-containing Ru chromophores to a reactive Pt site. These complexes show how substitution of the monodentate ligand on the [(tpy)RuCl(BL)](+) synthons can tune the properties of these light absorbers (LA) and incorporate a (31)P NMR tag by addition of the PEt(2)Ph ligand. The redox potentials for the Ru(III/II) couples occur at values greater than 1.00 V versus the Ag/AgCl reference electrode and can be tuned to more positive potentials on going from Cl(-) to CH(3)CN or PEt(2)Ph (E(1/2) = 1.01, 1.55, and 1.56 V, respectively, for BL = bpm). The BL(0/-) couple at -1.03 (bpm) and -1.05 V (dpp) for [(tpy)Ru(PEt(2)Ph)(BL)](2+) shifts dramatically to more positive potentials upon the addition of the PtCl(2) moiety to -0.34 (bpm) and -0.50 V (dpp) for the [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) bridged complex. The lowest energy electronic absorption for these complexes is assigned as the Ru(d pi) --> BL(pi*) metal-to-ligand charge transfer (MLCT) transition. These MLCT transitions are tuned to higher energy in the monometallic synthons when Cl(-) is replaced by CH(3)CN or PEt(2)Ph (516, 452, and 450 nm, for BL = bpm, respectively) and to lower energy when Pt(II)Cl(2) is coordinated to the bridging ligand (560 and 506 nm for BL = bpm or dpp). This MLCT state displays a broad emission at room temperature for all the dpp systems with the [(tpy)Ru(PEt(2)Ph)(dpp)PtCl(2)](2+) system exhibiting an emission centered at 750 nm with a lifetime of 56 ns. These supramolecular complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) represent the covalent linkage of TAG-LA-BL-RM assembly (TAG = NMR active tag, RM = Pt(II) reactive metal).  相似文献   

6.
We describe the synthesis, electrochemical, and photophysical properties of two new luminescent Ru(II) diimine complexes covalently attached to one and three 4-piperidinyl-1,8-naphthalimide (PNI) chromophores, [Ru(bpy)(2)(PNI-phen)](PF(6))(2) and [Ru(PNI-phen)(3)](PF(6))(2), respectively. These compounds represent a new class of visible light-harvesting Ru(II) chromophores that exhibit greatly enhanced room-temperature metal-to-ligand charge transfer (MLCT) emission lifetimes as a result of intervening intraligand triplet states ((3)IL) present on the pendant naphthalimide chromophore(s). In both Ru(II) complexes, the intense singlet fluorescence of the pendant PNI chromophore(s) is nearly quantitatively quenched and was found to sensitize the MLCT-based photoluminescence. Excitation into either the (1)IL or (1)MLCT absorption bands results in the formation of both (3)MLCT and (3)IL excited states, conveniently monitored by transient absorption and fluorescence spectroscopy. The relative energy ordering of these triplet states was determined using time-resolved emission spectra at 77 K in an EtOH/MeOH glass where dual emission from both Ru(II) complexes was observed. Here, the shorter-lived higher energy emission has a spectral profile consistent with that typically observed from (3)MLCT excited states, whereas the millisecond lifetime lower energy band was attributed to (3)IL phosphorescence of the PNI chromophore. At room temperature the data are consistent with an excited-state equilibrium between the higher energy (3)MLCT states and the lower energy (3)PNI states. Both complexes display MLCT-based emission with room-temperature lifetimes that range from 16 to 115 micros depending upon solvent and the number of PNI chromophores present. At 77 K it is apparent that the two triplet states are no longer in thermal equilibrium and independently decay to the ground state.  相似文献   

7.
The photophysical behavior of novel bimetallic Ru(II) and Os(II) complexes having a bridging ligand consisting of two terpyridyl moieties covalently linked in the 4′ position through a distyrylbenzene bridge (tp vp vpt) is reported. The Ru(II) complex has a unique red emission with an excited state lifetime nearly 2000-times longer than the parent complex, [Ru(mpt)2](PF6)2 (mpt=4′-(methylphenyl)-2,2′,6′,2″-terpyridine). Combined spectral data suggest the presence of an emissive intra-ligand charge-transfer (ILCT) state lower in energy than the metal-to-ligand charge transfer (MLCT) state. The Os(II) complex exhibits red emission that is similar to that of the parent complex [Os(mpt)2](PF6)2. However, the excited state absorption spectrum reveals a unique transient absorption in the far red that suggests perturbation of the MLCT state by the ILCT state.  相似文献   

8.
Extension of time-resolved infrared (TRIR) measurements into the near-infrared region has allowed the first direct measurement of a mixed-valence band in the metal-to-ligand charge transfer (MLCT) excited state of a symmetrical ligand-bridged complex. Visible laser flash excitation of [(tpy)Ru(tppz)Ru(tpy)]4+ (tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine; tpy is 2,2':6',6' '-terpyridine) produces the mixed-valence, MLCT excited state [(tpy)RuIII(tppz*-)RuII(tpy)]4+* with the excited electron localized on the bridging tppz ligand. A mixed-valence band appears at numax = 6300 cm-1 with a bandwidth-at-half- maximum, Deltanu1/2 = 1070 cm-1. In the analogous ground-state complex, [(tpy)Ru(tppz)Ru(tpy)]5+, a mixed-valence band appears at numax = 6550 cm-1 with Deltanu1/2 = 970 cm-1 which allows a comparison to be made of electronic coupling across tppz0 and tppz*- as bridging ligands.  相似文献   

9.
The tritopic bridging ligand hexaazatriphenylene (HAT) has been used to prepare the mono-, di-, and trinuclear cyanoruthenate complexes [Ru(CN)(4)(HAT)](2-) ([1](2-)), [{Ru(CN)(4)}(2)(mu(2)-HAT)](4-) ([2](4-)), and [{Ru(CN)(4)}(3)(mu(3)-HAT)](6-) ([3](6-)). These complexes are of interest both for their photophysical properties and ability to act as sensitizers, associated with strong MLCT absorptions; and their structural properties, with up to 12 externally directed cyanide ligands at a single "node" for preparation of coordination networks. The complexes are strongly solvatochromic, with broad and intense MLCT absorption manifolds arising from the presence of low-lying pi* orbitals on the HAT ligand, as confirmed by DFT calculations; in aprotic solvents [3](6-) is a panchromatic absorber of visible light. Although nonluminescent in fluid solution, the lowest MLCT excited states have lifetimes in D(2)O of tens of nanoseconds and could be detected by time-resolved IR spectrosocopy. For dinuclear [2](4-) and trinuclear [3](6-) the TRIR spectra are indicative of asymmetric MLCT excited states containing distinct Ru(III) and Ru(II) centers on the IR time scale. The complexes show red (3)MLCT luminescence as solids and in EtOH/MeOH glass at 77 K. Ln(III) salts of [1](2-), [2](4-), and [3](6-) form infinite coordination networks based on Ru-CN-Ln bridges with a range of one-, two-, and three-dimensional polymeric structures. In the Yb(III) and Nd(III) salts of [3](6- )the complex anion forms an 8-connected node. Whereas all of the Gd(III) salts show strong (3)MLCT luminescence in the solid state, the Ru-based emission in the Nd(III) and Yb(III) analogues is substantially quenched by Ru --> Ln photoinduced energy transfer, which results in sensitized near-infrared luminescence from Yb(III) and Nd(III).  相似文献   

10.
The variations in the nonchromophoric ligands of [Ru(L)4bpy]2+ complexes are shown to result in large changes in emission band shapes, even when the emission energies are similar. These changes in band shape are systematically examined by means of the generation of empirical reorganizational energy profiles (emreps) from the observed emission spectra (Xie, P.; et al. J. Phys. Chem. A 2005, 109, 4671), where these profiles provide convenient probes of the differences in distortions from the ground-state structures of the 2,2-bipyridine (bpy) ligands (for distortion modes near 1500 cm(-1)) in the metal-to-ligand charge-transfer (MLCT) excited states for a series of complexes with the same ruthenium(II) bipyridine chromophore. The bpy ligand is nearly planar in the X-ray structures of the complexes with (L)4 = (NH3)4, triethylenetetraamine (trien), and 1,4,7,10-tetraazacyclododecane ([12]aneN4). However, for (L)4 = 5,12-rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, the X-ray crystal structure shows that the bpy ligand is twisted in the ground state (a result of methyl/bpy stereochemical repulsion) and the emrep amplitude at about 1500 cm(-1) is significantly larger for this structure than for the complex with (L)4 = 1,4,8,11-tetraazacyclotetradecane, consistent with larger reorganizational energies of the bpy distortion modes in order to form a planar (bpy(-)) moiety in the excited state of the former. The trien and [12]aneN4 complexes have very nearly the same emission energies, yet the 40% smaller vibronic sideband intensity of the latter indicates that the MLCT excited state is significantly less distorted; this smaller distortion and the related shift in the distribution of distortion mode reorganizational energy amplitudes is apparently related to the 36-fold longer lifetime for (L)4 = [12]aneN4 than for (L)4 = trien. For the majority (77%) of the [Ru(L)4bpy]2+ complexes examined, there is a systematic decrease in emrep amplitudes near 1500 cm(-1), consistent with decreasing excited-state distortion, with the excited-state energy as is expected for ground state-excited state configurational mixing in a simple two-state model. However, the complexes with L = [12]aneN4, 1,4,7,10-tetraazacyclododeca-1-ene, and (py)4 all have smaller emrep amplitudes and thus less distorted excited states than related complexes with the same emission energy. The observations are not consistent with simple two-state models and seem to require an additional distortion induced by excited state-excited state configurational mixing in most complexes. Because the stereochemical constraints of the coordinated [12]aneN4 ligand restrict tetragonal distortions around the metal, configurational mixing of the 3MLCT excited state with a triplet ligand-field excited state of Ru(II) could account for some of the variations in excited-state distortion. The large number of vibrational distortion modes and their small vibrational reorganizational energies in these complexes indicate that a very large number of relaxation channels contribute to the variations in 3MLCT lifetimes and that the metal-ligand skeletal modes are likely to contribute to some of these channels.  相似文献   

11.
We have synthesized ruthenium(II) polypyridyl complexes (1) Ru(II)(bpy)(2)(L(1)), (2) Ru(II)(bpy)(2)(L(2)) and (3) Ru(II)(bpy)(L(1))(L(2)), where bpy = 2,2'-bipyridyl, L(1) = 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) and L(2) = 4-(N,N-dimethylamino-phenyl)-(2,2'-bipyridine) and investigated the intra-ligand charge transfer (ILCT) and ligand-ligand charge transfer (LLCT) states by optical absorption and emission studies. Our studies show that the presence of electron donating -NMe(2) functionality in L(2) and electron withdrawing catechol fragment in L(1) ligands of complex 3 introduces low energy LLCT excited states to aboriginal MLCT states. The superimposed LLCT and MLCT state produces redshift and broadening in the optical absorption spectra of complex 3 in comparison to complexes 1 and 2. The emission quantum yield of complex 3 is observed to be extremely low in comparison to that of complex 1 and 2 at room temperature. This is attributed to quenching of the (3)MLCT state by the low-emissive (3)LLCT state. The emission due to ligand localized CT state (ILCT and LLCT) of complexes 2 and 3 is revealed at 77 K in the form of a new luminescence band which appeared in the 670-760 nm region. The LLCT excited state of complex 3 is populated either via direct photoexcitation in the LLCT absorption band (350-700 nm) or through internal conversion from the photoexcited (3)MLCT (400-600 nm) states. The internal conversion rate is determined by quenching of the (3)MLCT state in a time resolved emission study. The internal conversion to LLCT and ILCT excited states are observed to be as fast as ~200 ps and ~700 ps for complexes 3 and 2, respectively. The present study illustrates the photophysical property of the ligand localized excited state of newly synthesized heteroleptic ruthenium(II) polypyridyl complexes.  相似文献   

12.
The physical and photophysical properties of a series of monometallic, [Ru(bpy)(2)(dmb)](2+), [Ru(bpy)(2)(BPY)](2+), [Ru(bpy)(Obpy)](2+) and [Ru(bpy)(2)(Obpy)](2+), and bimetallic, [{Ru(bpy)(2)}(2)(BPY)](4+) and [{Ru(bpy)(2)}(2)(Obpy)](4+), complexes are examined, where bpy is 2,2'-bipyridine, dmb is 4,4'-dimethyl-2,2'-bipyridine, BPY is 1,2-bis(4-methyl-2,2'-bipyridin-4'-yl)ethane, and Obpy is 1,2-bis(2,2'-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nm region, intraligand pi --> pi transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at -1.3 V and ending at approximately -1.9 V, and emission from a (3)MLCT state having energy maxima between 598 and 610 nm. The Ru(III)/Ru(II) oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy)(2)(BPY)](2+), the Ru(III)/Ru(II) potential for [Ru(bpy)(2)(Obpy)](2+) increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3 ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [{Ru(bpy)(2)}(2)(BPY)](4+), the Ru(III)/Ru(II) potential for [{Ru(bpy)(2)}(2)(Obpy)](4+) increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26. Emission lifetimes measured in 4:1 ethanol:methanol were temperature dependent over 90-360 K. In the fluid environment, emission lifetimes display a biexponential energy dependence ranging from 100 to 241 cm(-)(1) for the first energy of activation and 2300-4300 cm(-)(1) for the second one. The smaller energy is attributed to changes in the local matrix of the chromophores and the larger energy of activation to population of a higher energy dd state. Explanations for the variations in physical properties are based on molecular mechanics calculations which reveal that the Ru-N bond distance increases from 2.05 ? (from Ru(II) to bpy and BPY) to 2.08 ? (from Ru(II) to Obpy) and that the metal-to-metal distance increases from approximately 7.5 ? for [{Ru(bpy)(2)}(2)(Obpy)](4+) to approximately 14 ? for [{Ru(bpy)(2)}(2)(BPY)](4+).  相似文献   

13.
Fan Y  Zhang LY  Dai FR  Shi LX  Chen ZN 《Inorganic chemistry》2008,47(7):2811-2819
When 3-ethynyl-1,10-phenanthroline (HCCphen) or 3,8-diethynyl-1,10-phenanthroline (HCCphenCCH) is utilized as a bifunctional bridging ligand via stepwise molecular fabrication, a series of Pt-Ru and Pt-Re heteronuclear complexes composed of both platinum(II) terpyridyl acetylide chromophores and a Ru(phen)(bpy)2/Re(phen)(CO)3Cl subunit were prepared by complexation of one or two Pt((t)Bu3tpy)(2+) units to the mononuclear Ru(II) or Re(I) precursor through platinum acetylide sigma coordination. These Pt-Ru and Pt-Re complexes exhibit intense low-energy absorptions originating from both Pt- and Ru (Re)-based metal-to-ligand charge-transfer (MLCT) states in the near-visible region. They are strongly luminescent in both solid states and fluid solutions with a submicrosecond range of lifetimes and 0.27-6.58% of quantum yields in degassed acetonitrile. For the Pt-Ru heteronuclear complexes, effective intercomponent Pt --> Ru energy transfer takes place from the platinum(II) terpyridyl acetylide chromophores to the ruthenium(II) tris(diimine)-based emitters. In contrast, dual emission from both Pt- and Re-based (3)MLCT excited states occurs because of less efficient intercomponent Pt --> Re energy transfer in the Pt-Re heteronuclear complexes.  相似文献   

14.
The mono- (1) and dinuclear (2) ruthenium(II) bis(2,2'-bipyridine) complexes of 2,5-di(pyridin-2-yl)pyrazine (2,5-dpp), for which the UV/Vis absorption and emission as well as electrochemical properties have been described earlier, are reinvestigated here by resonance, surface enhanced and transient resonance Raman spectroscopy together with selective deuteration to determine the location of the lowest lying excited metal to ligand charge transfer ((3)MLCT) states. The ground state absorption spectrum of both the mono- and dinuclear complexes are characterised by resonance Raman spectroscopy. The effect of deuteration on emission lifetimes together with the absence of characteristic bipy anion radical modes in the transient Raman spectra for both the mono- and dinuclear complexes bridged by the 2,5-dpp ligand confirms that the excited state is 2,5-dpp based; however DFT calculations and the effect of deuteration on emission lifetimes indicate that the bipy based MLCT states contribute to excited state deactivation. Resonance Raman and surface enhanced Raman spectroscopic (SERS) data for 1 and 2 are compared with that of the heterobimetallic complexes [Ru(bipy)(2)(2,5-dpp)PdCl(2)](2+)3 and [Ru(bipy)(2)(2,5-dpp)PtCl(2)](2+)4. The SERS data for 1 indicates that a heterobimetallic Ru-Au complex forms in situ upon addition of 1 to a gold colloid.  相似文献   

15.
N,N'-Chelating ligands based on the 2-(2-pyridyl)benzimidazole (PB) core have been prepared with a range of substituents (phenyl, pentafluorophenyl, naphthyl, anthracenyl, pyrenyl) connected to the periphery via alkylation of the benzimidazolyl unit at one of the N atoms. These PB ligands have been used to prepare a series of complexes of the type [Re(PB)(CO)(3)Cl], [Pt(PB)(CCR)(2)](where -CCR is an acetylide ligand) and [Ru(bpy)(2)(PB)][PF(6)](2)(bpy = 2,2'-bipyridine). Six of the complexes have been structurally characterised. Electrochemical and luminescence studies show that all three series of complexes behave in a similar manner to the analogous complexes with 2,2'-bipyridine in place of PB. In particular, all three series of complexes show luminescence in the range 553-605 nm (Pt series), 620-640 nm (Re series) and 626-645 nm (Ru series) arising from the (3)MLCT state, with members of the Pt(II) series being the most strongly emissive with lifetimes of up to 500 ns and quantum yields of up to 6% in air-saturated CH(2)Cl(2) at room temperature. In the Re and Ru series there was clear evidence for inter-component energy-transfer processes in both directions between the (3)MLCT state of the metal centre and the singlet and triplet states of the pendant organic luminophores (naphthalene, pyrene, anthracene). For example the pyrene singlet is almost completely quenched by energy transfer to a Re-based MLCT excited state, which in turn is completely quenched by energy transfer to the lower-lying pyrene triplet state. For the analogous Ru(II) complexes the inter-component energy transfer is less effective, with (1)anthracene --> Ru((3)MLCT) energy transfer being absent, and Ru((3)MLCT)-->(3)anthracene energy transfer being incomplete. This is rationalised on the basis of a greater effective distance for energy transfer in the Ru(II) series, because the MLCT excited states are localised on the bpy ligands which are remote from the pendant aromatic group; in the Re series in contrast, the MLCT excited states involve the PB ligand to which the pendant aromatic group is directly attached, giving more efficient energy transfer.  相似文献   

16.
The dinuclear complex [{Ru(CN)(4)}(2)(μ-bppz)](4-) shows a strongly solvent-dependent metal-metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH(2)Cl(2). In CH(2)Cl(2) the separation between the successive Ru(ii)/Ru(iii) redox couples is 350 mV and the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mV and the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH(2)Cl(2) or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH(2)Cl(2) and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCT excited state, which is formulated as Ru(III)(bppz˙(-))Ru(II) and can therefore be considered as a mixed-valence Ru(ii)/Ru(iii) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(ii) and Ru(iii) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙(-) which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(ii)/Ru(ii), Ru(ii)/Ru(iii) and Ru(iii)/Ru(iii) calculations in both water and CH(2)Cl(2) well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)(4)(μ-bppz)](2-) and [{Ru(CN)(4)}(2)(μ-bppz)](4-) very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH(2)Cl(2).  相似文献   

17.
Li MX  Zhou X  Xia BH  Zhang HX  Pan QJ  Liu T  Fu HG  Sun CC 《Inorganic chemistry》2008,47(7):2312-2324
A series of ruthenium(II) complexes, [Ru(tcterpy)(NCS)3](4-) (0H), [Ru(Htcterpy)(NCS)3](3-) (1H), [Ru(H2tcterpy)(NCS)3](2-) (2H), and [Ru(H3tcterpy)(NCS)3](-) (3H) (tcterpy = 4,4',4'-tricarboxy-2,2':6',2'-terpyridine), are investigated theoretically to explore their electronic structures and spectroscopic properties. The geometry structures of the complexes in the ground and excited states are optimized by the density functional theory and single-excitation configuration interaction methods, respectively. The absorption and emission spectra of the complexes in gas phase and solutions (ethanol and water) are predicted at the TDDFT(B3LYP) level. The calculations indicate that the protonation effect slightly affects the geometry structures of the complexes in the ground and excited states but leads to significant change in the electronic structures. In cases of both absorptions and emissions, the energy levels of HOMOs and LUMOs for 0H-3H decrease dramatically as a result of the introduction of the COOH groups. The protonation much stabilizes the unoccupied orbitals with respect to the occupied orbitals. Thus, both the absorptions and emissions are red-shifted from 0H to 3H. The phosphorescence of 0H-3H are attributed to tcterpyridine --> d(Ru)/NCS ((3)MLCT/(3)LLCT) transitions. The solvent media can influence the molecular orbital distribution of the complexes; as a consequence, the spectra calculated in the presence of the solvent are in good agreement with the experimental results. The MLCT/LLCT absorptions of 0H in ethanol and water are red-shifted relative to that in the gas phase. However, the MLCT/LLCT absorptions of the protonated complexes (1H-3H) are blue-shifted in ethanol and water with respect to the gas phase. Similarly, the solvent effect causes a blue-shift of the phosphorescent emission for 0H-3H.  相似文献   

18.
Six new nonlinear optical (NLO) chromophores with pyrazinyl-pyridinium electron acceptors have been synthesized by complexing a known pro-ligand with electron donating {Ru(II)(NH(3))(5)}(2+) or trans-{Ru(II)(NH(3))(4)(py)}(2+) (py = pyridine) centers. These cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. The visible d → π* metal-to-ligand charge-transfer (MLCT) absorptions gain intensity on increasing the number of Ru(II) centers from one to two, but remain at constant energy. One or two Ru(III/II) redox processes are observed which are reversible, quasi-reversible, or irreversible, while all of the ligand-based reductions are irreversible. Molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and depolarization studies show that the NLO responses of the symmetric species are strongly two-dimensional (2D) in character, with dominant "off-diagonal" β(zyy) components. Stark (electroabsorption) spectroscopic measurements on the MLCT bands also allow the indirect determination of estimated static first hyperpolarizabilities β(0). Both the HRS and the Stark-derived β(0) values increase on moving from mono- to bimetallic complexes, and substantial enhancements in NLO response are achieved when compared with one-dimensional (1D) and 2D monometallic Ru(II) ammine complexes reported previously.  相似文献   

19.
Ru(II)-bis-pyridine complexes typically absorb below 450?nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16,000 M(-1) cm(-1)). Thus, Ru(II)-polyimine complexes that show intense visible-light absorptions are of great interest. However, no effective light-harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible-light-harvesting Ru(II)-coumarin arrays, which absorb at 475?nm (ε up to 63,300 M(-1) cm(-1), 4-fold higher than typical Ru(II)-polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy-transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady-state and time-resolved spectroscopy and DFT calculations, we proposed a general rule for the design of Ru(II)-polypyridine-chromophore light-harvesting arrays, which states that the (1)IL energy level of the ligand must be close to the respective energy level of the metal-to-ligand charge-transfer (MLCT) states. Lower energy levels of (1)IL/(3)IL than the corresponding (1)MLCT/(3)MLCT states frustrate the cascade energy-transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light-harvesting effect can be used to improve the upconversion quantum yield to 15.2?% (with 9,10-diphenylanthracene as a triplet-acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95?%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号