首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 244 毫秒
1.
采用发射光谱法,首次研究了等离子体参数及激发状态对介质阻挡放电六边形斑图稳定性的影响。在氩气/空气混合气体的介质阻挡放电中,随着电压的升高,放电丝直径增大,六边形斑图逐渐稳定,同时放电颜色由紫色逐渐变为灰白色,说明其等离子体状态及参数可能发生了变化。测量了六边形斑图放电过程中氮分子谱线和氩原子谱线相对于氩原子763.51 nm的相对强度、分子振动温度和电子激发温度随外加电压的变化。结果发现:氮分子谱线相对强度随电压增加而降低,氩原子谱线相对强度却升高;分子振动温度与电子激发温度均随电压增加而增大。这些现象表明:随着电压增大,电子能量增加。由此,氩原子激发增多,放电丝直径增大,介质表面上沉积的壁电荷面积增大,放电丝之间的相互作用增强,六边形斑图趋于稳定。  相似文献   

2.
大气压氩直流微放电光谱研究   总被引:1,自引:1,他引:0  
微空心阴极放电或微放电是一种能够实现高气压下放电的有效方法。利用不锈钢空心针作阴极,不锈钢网作阳极,进行了大气压氩直流微放电实验研究。测量了大气压氩微放电光谱,发现氩气的发 射谱线主要集中在690~860 nm范围,且全部为氩原子4p—4s的跃迁。实验研究了不同放电电流、气体压强、气体流量与谱线强度之间的关系,发现谱线强度随放电电流、气体流量增加均增加,而谱线强 度随压强变化呈现不同特征:谱线强度随压强的增加先增加后降低,在13.3 kPa时强度最大。此外,选用跃迁波长为763.51和772.42 nm的两条光谱线,利用发射谱线强度比值法测量了氩气微放电等离子 体的电子激发温度。结果显示,其电子激发温度处于2 000~2 800 K之间,且随放电电流的增加而增加,随气体压强和气体流量的增加而降低。  相似文献   

3.
为了加快低温氦气等离子体射流的工程化进程,通过自主设计的同轴式介质阻挡放电等离子体射流发生器,在放电频率10 kHz,一个大气压条件下产生了稳定的氦气等离子体射流。通过分析不同工况下的电压电流波形可以发现单纯增加氦气体积流量只能小幅的增加电流脉冲幅值,而对放电时间、电流脉冲数的影响不大。增加放电峰值电压时电流脉冲幅值会得到较大幅度增加。通过发射光谱法对大气压氦气等离子射流的活性粒子种类、电子激发温度、电子密度进行了诊断。结果表明,大气压氦气等离子体射流中的主要活性粒子为He Ⅰ原子、N2第二正带系、N+2的第一负带系、羟基(OH),H原子的巴尔末线系(Hα和Hβ)与O原子,这表明虽然该试验中使用的氦气纯度已达99.99%,但其中仍残留有少量的空气,同时放电时大气中的空气会被卷吸到放电空间发生电离。还可以发现,主要活性粒子的相对光谱强度随氦气体积流量的增加及放电峰值电压的增大均呈现上涨的趋势。选用He Ⅰ原子的四条谱线对不同试验工况下的电子激发温度进行了计算,得到大气压氦气等离子体射流的电子激发温度在3 500~6 300 K之间,电子激发温度随放电峰值电压与氦气体积流量的增大总体上呈现上升的趋势。但由于反向电场的存在,某些峰值电压可能会出现电子激发温度下降的情况;根据Stark展宽原理对大气压氦气等离子体射流的电子密度进行了计算,发现电子密度的数量级可达1015 cm-3,同时增大峰值电压与氦气体积流量均可有效的提高射流中的电子密度。这些参数的研究对氦气等离子体射流在工程实际中的应用具有重要意义。  相似文献   

4.
通过介质阻挡放电产生的等离子体可与燃料中的烃类分子发生碰撞裂解反应,将燃料分子裂解生成更容易起爆的氢气和小分子烃类,能有效改善液体燃料连续旋转爆震发动机的起爆性能。该研究在真空仓中开展体积介质阻挡放电的丝状放电光谱测试,分析了大气压氩气环境下体积介质阻挡放电的电子激发温度和电子密度随加载电压的变化规律。丝状放电的电子激发温度通过波尔兹曼斜率法计算,电子密度采用斯塔克展宽法计算。发现发射谱线均由氩原子4p-4s能级跃迁产生;各谱线强度随加载电压的提高均呈上升趋势,且与电压基本呈线性关系;对于大气压丝状放电,加载电压对电子激发温度和电子密度没有明显影响作用,加载电压12.5~14.5 kV范围内,电子激发温度稳定在3 400 K附近,电子密度在1025 m-3量级。  相似文献   

5.
大气压氩气介质阻挡放电中的电子激发温度   总被引:8,自引:4,他引:4  
采用发射光谱强度比法,测量了大气压氩气介质阻挡放电(DBD)中的电子激发温度。实验在690~800 nm的范围内测量了大气压氩气DBD的发射光谱,经分析发现这些谱线全部是氩原子的发射谱线。为了测量电子激发温度,选用相距较近的763.51 nm(2P6→1S5),772.42 nm(2P2→1S3)的两条光谱线。结果发现电子温度的范围为0.1~0.5 eV,电子激发温度随电压的增加而增加,随流量的增加而减小。实验还发现氩气流动与非流动时电子激发温度有明显的差别。上述结果对介质阻挡放电在工业领域上的应用具有重要意义。  相似文献   

6.
大气压介质阻挡放电超四边形斑图的等离子体参量   总被引:1,自引:0,他引:1       下载免费PDF全文
陈俊英  董丽芳  李媛媛  宋倩  嵇亚飞 《物理学报》2012,61(7):75211-075211
本工作利用双水电极介质阻挡放电装置,采用发射光谱方法,在大气压氩气介质阻挡放电中研究了由不同空间尺度 微放电通道构成的超四边形斑图的等离子体参量.实验发现直径较大的微放电通道(大点)和直径较小的微放电通道(小点)亮度不同.采用氮分子第二正带系谱线计算了分子振动温度,利用谱线强度比方法得到了电子激发温度,用氩原子696.54 nm谱线的Stark展宽估算了电子密度.结果显示小点的电子密度和分子振动温度均高于大点,而电子激发温度低于大点.这说明稳定超四边形斑图中不同尺度微放电的等离子体状态不同.  相似文献   

7.
常压射流等离子体发射光谱研究   总被引:2,自引:0,他引:2  
使用改进介质阻挡放电装置生成常压射流等离子体,采用光纤光栅光谱仪在300~1 000 nm范围记录了不同放电电压的氩气发射光谱,并比较了空气和氩气常压介质阻挡放电等离子体发射光谱,分析发现氩气发射光谱中的谱线都是氩原子的发射谱线,表明常压射流装置产生的等离子体全部为氩等离子体,而无其他空气成分参与放电。为测量电子激发温度,选用相距较近的763.51和772.42 nm两条光谱线对电子温度进行分析,结果表明电子激发温度的范围在0.1~0.3 eV,而且它还随着放电电压的增加而增加。初步使用“红外测温仪”测量被处理材料表面温度,结果发现材料表面的温度也随着放电电压的增加而增加,范围在50~100 ℃,材料表面温度的变化趋势可以近似表征等离子体宏观温度变化趋势。通过分析常压射流等离子体的温度特性,探讨了常压射流等离子体温度对材料改性研究的意义。  相似文献   

8.
大气压下介质阻挡放电应用领域具有多范畴、深广度、常态化等优势,针对同轴电极放电试验进行了系列参数诊断。采用自主研发的介质阻挡放电助燃激励器,在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV(间隔1.0 kV)条件下进行了氩气电离试验。采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;选用二谱线法及Boltzmann法测试了电子激励温度;根据Stark展宽效应计算了电子密度;获得了电子激励温度及电子密度随放电峰值电压增长的变化规律。结果表明,在试验电压条件下电子激励温度并不随外加电压的升高而递增,这表明通道内微放电的主要特征并不依赖于外部电压的供给,而是取决于气体组份、气体压强和放电模型,增大外加放电电压仅增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K符合典型的低温等离子体特征;电子密度随外加电压的增长而趋于准线性趋势,电子密度数量级可达到108~109 cm-3,电离度偏弱。这些参数的探索对等离子体研讨有重大意义。  相似文献   

9.
采用光谱在线技术(OES)检测了大气压 Ar/NH3 DBD 等离子体中的主要粒子为 NH,N,N+,N2, Ar,Hα,OH。NH 是 NH3分解的产物,激发态 Ar*和 NH3分子的潘宁碰撞生成激发态中性粒子 NH(c 1Π)和 NH(A 3Π)。674.5 nm 处 N 原子谱线表明等离子体中产生了 N 活性原子,为大气压 Ar/NH3同轴介质阻挡放电等离子体合成ε-Fe3 N 磁性颗粒提供了可能。研究了各主要粒子谱线强度随 NH3流量和外加电压峰峰值的变化规律,研究结果表明:NH3流量相同时,随外加电压峰峰值升高,各粒子谱线强度均逐渐增强;外加电压峰峰值相同时,各谱线强度随 NH3流量增加先增强后减弱。外加电压峰峰值相同时,随 NH3流量增加,N 活性原子谱线强度先增强后减弱,NH3流量为20 mL·min-1时,N 活性原子谱线强度最强。NH3流量相同时,随外加电压峰峰值升高,N 活性原子谱线强度逐渐减小,主要是由于大气压 Ar/NH3 DBD 放电模式由多脉冲大气压辉光放电转变为丝状放电造成。多脉冲大气压辉光放电的微放电通道之间相互重叠,各个微放电之间相互影响,导致随外加电压峰峰值升高各谱线强度的增加速率较快。当外加电压峰峰值从4600 V 升高到6400 V 时,大气压 Ar/NH3 DBD 的放电模式由单脉冲 APGD 转变为二脉冲 APGD,属于均匀大气压介质阻挡放电,随外加电压峰峰值升高谱线强度的增加速率较快,利于合成ε-Fe3 N 磁性颗粒。  相似文献   

10.
采用光谱在线技术(OES)检测了大气压Ar/NH_3 DBD等离子体中的主要粒子为NH,N,N~+,N_2,Ar,H_α,OH。NH是NH_3分解的产物,激发态Ar~*和NH_3分子的潘宁碰撞生成激发态中性粒子NH(c~1Ⅱ)和NH(A~3Ⅱ)。674.5 nm处N原子谱线表明等离子体中产生了N活性原子,为大气压Ar/NH_3同轴介质阻挡放电等离子体合成ε-Fe_3N磁性颗粒提供了可能。研究了各主要粒子谱线强度随NH_3流量和外加电压峰峰值的变化规律,研究结果表明:NH_3流量相同时,随外加电压峰峰值升高,各粒子谱线强度均逐渐增强;外加电压峰峰值相同时,各谱线强度随NH_3流量增加先增强后减弱。外加电压峰峰值相同时,随NH_3流量增加,N活性原子谱线强度先增强后减弱,NH_3流量为20 mL·min~(-1)时,N活性原子谱线强度最强。NH_3流量相同时,随外加电压峰峰值升高,N活性原子谱线强度逐渐减小,主要是由于大气压Ar/NH_3DBD放电模式由多脉冲大气压辉光放电转变为丝状放电造成。多脉冲大气压辉光放电的微放电通道之间相互重叠,各个微放电之间相互影响,导致随外加电压峰峰值升高各谱线强度的增加速率较快。当外加电压峰峰值从4 600 V升高到6 400 V时,大气压Ar/NH_3 DBD的放电模式由单脉冲APGD转变为二脉冲APGD,属于均匀大气压介质阻挡放电,随外加电压峰峰值升高谱线强度的增加速率较快,利于合成e-Fe_3N磁性颗粒。  相似文献   

11.
高光谱成像的褐土土壤速效钾含量预测   总被引:2,自引:0,他引:2  
精细农业变量施肥取决于对农田的土壤养分分布的了解,快速获取土壤信息是实施精细农业的基础。速效钾是土壤肥力的重要参数,是植物生长发育所必需的营养元素。对土壤速效钾含量进行测量,是了解土壤肥力的重要途径,是实现精细农业的必要条件。以山西典型褐土土壤为研究对象,采集农田耕层褐土土壤样品共169份,样品经风干处理,手动捏碎较大的土粒并去除杂质后,未经研磨过筛处理而直接用于土壤近红外高光谱的测量。根据实验室速效钾含量测定结果,将所有土壤样品分为两类:其中速效钾含量低于100 mg·kg-1的样品共144个,随机选取108个作为低含量建模集(Lc),剩余36个作为低含量验证集(Lp);速效钾含量高于100 mg·kg-1的样品共25个,随机选取19个作为高含量建模集(Hc),剩余6个作为高含量验证集(Hp)。其中LcHc统称为所有含量建模集(Tc),Lp和Hp统称为所有含量验证集(Tp)。获取所有土壤样本950~1 650 nm范围内的近红外高光谱图像。分别采用平均光谱曲线(R)、平均光谱曲线的一阶导数(FD)、平均光谱曲线与一阶导数共同建模(R&FD)、平均光谱曲线与一阶导数的乘积(R*FD)、平均光谱曲线与一阶导数的商(R/FD)等五种光谱数据预处理方法,结合偏最小二乘法(PLS),分别对建模集Tc,LcHc建模,然后分别对验证集Tp,LpHp进行验证。结果表明:土壤的平均光谱反射率随速效钾含量的增大呈现先增加后减小的趋势。当速效钾含量低于100 mg·kg-1时,所有波段的光谱反射率随速效钾含量的增加而增加;当速效钾含量在100~200 mg·kg-1之间时,所有波段的光谱反射率均达到最大值。当速效钾含量超过200 mg·kg-1时,950~1 400 nm的光谱反射率急剧减小,但曲线的整体斜率显著增加;且速效钾含量越高,曲线整体斜率越大。当速效钾含量高于100 mg·kg-1时,平均光谱曲线的一阶导数显著增大,且随速效钾含量的增加而增加。该研究建立的PLS模型,可以对整体(所有速效钾含量)和高含量(≥100 mg·kg-1)速效钾进行有效预测,但无法对低含量(≤100 mg·kg-1)速效钾进行预测。建模效果最好的光谱预处理方法为R*FD,其次为FD,R,而R&FD,R/FD预测效果相对较差。最优建模方式为:R*FD结合Tc建模,其PLS主因子个数为2个,RMSEc=29.293,RPDc=4.669,R2c=0.956;对Tp的验证效果为RMSEp=29.438,RPDp=4.740,R2p=0.958;对Hp的验证效果为RMSEp=23.033,RPDp=3.199,R2p=0.915。该模型能够根据土壤速效钾的含量对土壤进行分类:当预测值小于100 mg·kg-1时,表明土壤速效钾含量低于100 mg·kg-1,具体含量不确定;当预测值大于100 mg·kg-1时,预测值则能够很好反映土壤速效钾的真实含量。由于选用的土壤样本未经研磨和过筛处理,因而能够大大缩短样本制备时间,提高预测效率。该研究结果可为近红外高光谱成像应用于褐土土壤除速效钾含量以外其他营养成份的快速预测提供参考。  相似文献   

12.
使用水电极介质阻挡放电装置,对比氩气与氩气/少量空气的混合气体以及空气与空气/少量氩气的混合气体放电的发射光谱,研究了氩气与空气相混合时气体放电中的能量传递过程。实验发现, 当氩气中加入少量的空气时,氩原子谱线均变弱,说明空气中的氮分子对氩原子的各激发态具有猝灭作用。并且随着空气含量的增加,各谱线变弱的速率不同。越是与氮分子的激发电位接近的氩原子的激发态被猝灭的作用越明显。另一方面,当空气中加入少量氩气时,发现氮分子第二正带系和氮分子离子第一负带系的谱线均被增强。说明在空气/少量氩气放电中,氮分子的激发由于亚稳态氩原子的潘宁激发传能而增强。因此在氩气/空气混合气体放电中,气体成分及比例影响放电的发光特性和能量传输特性。  相似文献   

13.
采用了一种针对针的放电结构,将其放置在一个高纯氩气的密闭腔室中,通过施加正极性的过电压产生可重复的大气压纳秒脉冲放电,并提出建立大气压放电的连续辐射模型来诊断氩气纳秒脉冲放电中的电子温度。实验利用电压和电流探头分别获取放电过程中的电压和电流波形图,其放电脉宽约为20 ns。通过消色差透镜、单色仪和ICCD等光学系统的组合来测量放电正柱区在不同时刻(0<t<20 ns)的时间分辨发射光谱。结果表明,放电中连续谱的强度随时间先增加(0<t<10 ns)后减小(10 ns<t<20 ns),但是氩原子的谱线强度则随时间的增加而一直增大。研究表明连续谱强度与电子密度成正相关,因而电子密度随着时间也是先增加而后减小,这与放电电流的变化规律是完全一致的。根据连续谱模型拟合得到放电过程中(0<t<10 ns)的电子温度为(1.4±0.2) eV。随着驱动电压的下降(10 ns<t<20 ns),电子温度逐步减小至0.9 eV。在0<t<10 ns中,激发态氩原子主要是由电子碰撞激发产生的,因而谱线强度随着电子密度的增加而增大。然后,随着电子温度的减小,Ar+2复合反应速率激增,导致电子与离子的复合过程主导产生激发态氩原子,即谱线强度继续增大。通过加入0.5%的水蒸气以获取OH的振转光谱。实验发现,OH(A)的产生机制使其偏离玻尔兹曼平衡分布,本文采用了双温的OH(A-X)光谱模型来考察气体温度。在放电过程中,气体温度保持不变,大约为400 K。此外,水蒸气的加入使得短波长的连续谱发生显著增强。光谱分析认为H2O在放电中能够解离产生H2,继而与氩原子的亚稳态发生能量转移生成激发态H2(a3Σ+g)。H2(a3Σ+g)将会自发辐射跃迁到排除态H2(b3Σ+u),同时发射短波长的连续谱。由于短波长的连续谱对电子温度(Te>1 eV)的响应较为灵敏,所以载气中少量的水蒸气将会对连续谱诊断电子温度带来较大的影响。  相似文献   

14.
尖晶石的有序-无序相变作为尖晶石的一种重要性质,在国内缺少相关研究成果。运用拉曼光谱仪通过785 nm激光在液氮环境下激发含Cr的宝石级天然粉红色尖晶石,避免了532 nm激光激发下产生的469 nm的荧光峰和在常温测试下由于热振动对光谱的影响,得到清晰尖锐的拉曼光谱,为拉曼光谱参数的分析奠定基础。同时通过对一颗Cr元素致色的天然粉色镁铝尖晶石进行热处理使尖晶石逐步发生有序-无序相变,并反映在拉曼光谱的谱峰参数之中。各项参数分析结果显示,尖晶石的拉曼光谱主要由EgT2g(1),T2g(2),N3Ag,五种振动模式产生,其谱峰位置分别为407.8,312.4,667.5,720.0和769.0 cm-1;尖晶石拉曼光谱谱峰参数在800 ℃时发生突变: 各谱峰半高宽和各峰相对主峰Eg峰的相对强度明显增大,常温下几乎不可见的N3峰在高温处理后出现,并且T2g(1)峰向低波数偏移,T2g(2)向高波数偏移,同时峰的对称性逐渐消失。研究结果表明尖晶石的有序-无序相变可以通过拉曼光谱检测并且可以通过谱峰参数: 半高宽、谱峰相对高度等进行半定量表征。由于拉曼光谱具有的无损检测特点,使其成为宝石级热处理尖晶石鉴定应用的重要参考依据之一。  相似文献   

15.
大气压等离子体射流因其产生的等离子体羽富含活性粒子而在废水净化、元素探测、材料处理等方面具有良好的应用前景。通常等离子体羽的直径较小,限制了其工作效率。针对于此,利用交流电压激励大气压氩气等离子体射流,产生了直径约为14 mm的大尺度均匀等离子体羽。采用发射光谱法对电子密度和氧原子浓度随不同实验参数的变化关系进行了研究。光电测量结果表明,当外加电压峰值或氩气流量增加时,等离子体羽发光亮度增加。当电压峰值较低时,等离子体羽的上下游在电压的每个周期均有两个光脉冲信号,且上游光信号强度比下游的大。随着电压峰值增大,上下游等离子体羽的光信号强度都增大。当电压峰值较高时,上下游等离子体羽的光信号在每个电压周期呈现三个放电脉冲。不论每个电压周期放电脉冲数目多少,上下游等离子体羽的发光信号均具有同步性。利用光谱仪采集了300~800 nm范围内上下游等离子体羽的发射光谱,发现它们中均含有OH和N2的谱线及ArⅠ和OⅠ谱线。其中,上游等离子体羽的ArⅠ谱线强度比下游的大,但OH和N2的谱线强度比下游的小。利用谱线强度比对上、下游等离子体羽的电子密度进行了研究。结果表明,上游等离子体羽的电子密度在1014 cm-3量级,高于下游羽的电子密度(1013~1014 cm-3量级)。并且,上游和下游等离子体羽的电子密度均随外加电压峰值的升高而增加,随氩气流量的增加而增加。利用光化线强度法,研究了下游羽中氧原子浓度随实验参数的变化规律。结果表明,氧原子浓度沿气流方向降低;对于一个等离子体羽,平均而言氧原子浓度随外加电压峰值升高而增加,随氩气流量增加而增加。对于以上实验现象,利用气体放电的基本理论进行了定性解释。  相似文献   

16.
偏振探测是提高气溶胶卫星遥感能力的重要途径。作为目前全球重要的偏振数据源,我国高分五号卫星搭载的多角度偏振探测仪(DPC)能够测量不同的偏振量,包括Stokes矢量偏振分量、偏振辐亮度(L)和线偏振度(DOLP)。各偏振量所包含的有效信息和测量误差不同,进而影响气溶胶参数的反演精度。针对此,在最优估计反演框架下,利用信号自由度(DFS)和后验误差定量化分析了各偏振量对气溶胶参数反演的影响,为后续DPC气溶胶算法开发提供参考。研究结果表明:Stokes矢量包含的信息量最高,其次是线偏振度和偏振辐亮度,相应的气溶胶总DFS分别为7.5,6.1和5.2;采用不包含偏振方向信息的LP反演时,复折射指数虚部和粒子谱有效方差的信息量比采用Stokes矢量和DOLP反演时显著下降,表明这两个参数对偏振方向和测量误差敏感,增加偏振方向信息和降低测量误差能够有效提高这两个参数的可反演性;偏振方向的探测对提高气溶胶遥感能力有重要价值,采用LP和DOLP反演时,气溶胶各参数的后验误差比采用Stokes矢量反演分别增加67.6%和65.5%,其中细模态体积柱浓度和粒子谱有效半径受到的影响最大;在全部气溶胶参数中,复折射指数实部后验误差最小,虚部的反演不确定性最大。总体来说,细模态气溶胶的三个参数(体积柱浓度、复折射指数实部和粒子谱分布有效半径)在三种偏振量反演情况下平均DFS均大于0.85,能够较好的通过DPC观测反演得到,而粗模态气溶胶反演与气溶胶类型有关,参数反演不确定性较大。  相似文献   

17.
The radial dependences of the radiative characteristics of high-frequency electrodeless lamps (HFELs) using as a working medium either a mixture of mercury and argon or helium have been investigated in experiments and numerical simulations. The intensities of the mercury line at a wavelength of 546.1 nm and the helium line at 587.6 nm have been measured. The measurements were conducted at different points lying on the central chord of the circular end of a cylindrical lamp. As the power of the pumping generator increases, a decrease in the radiation intensity near the axis of the discharge in a mercury vapor HFEL is observed, while, in the helium lamp, on the contrary, the intensity increases. On the basis of models of HFELs developed earlier, we have calculated the radial dependences of the radiation intensity of the mercury line at 546.1 nm and the helium line at 587.6 nm. A satisfactory agreement with the data of experimental measurements has been attained. A comparative analysis has been carried out, and an explanation has been proposed for the difference in the observed radial intensity profiles of these two lines.  相似文献   

18.
Junyu Chen 《中国物理 B》2022,31(6):65205-065205
Plasma jet is an important low-temperature plasma source in extensive application fields. To promote the production of active oxygen species, oxygen is often introduced into the inert working gas. However, the influence of oxygen content on the discharge characteristics of an argon plasma jet is not clear. Aim to this status, an argon plasma jet in a single-electrode geometry is employed to investigate the influence of oxygen concentration (CO) on discharge aspects. Results indicate that with increasing CO (≤ 0.6%), the plume transits from a diffuse morphology to a hollow structure. Electrical and optical measurements reveal that both discharge number per voltage cycle and pulse intensity alter with varying CO. Moreover, discharge morphologies of negative and positive discharges obtained by fast photograph also shift with varying CO. Besides, optical emission spectra are collected to investigate atomic CO, electron density, and electron temperature. The results mentioned above are explained qualitatively, which are believed to be of great significance for the applications of atmospheric pressure plasma jet.  相似文献   

19.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号