首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用多芯 Nb/Cu 挤压管法制备的多芯 Nb_3Sn 超导复合线,研究了添加元素 Ti 对 Nb_3Sn反应层生长动力学及超导性能的影响.添加元素 Ti 明显提高了 Nb_3Sn 反应层生长速率.T_c值提高0.3K,H_c_2(O)提高到大约29T.在4.2K、15T 和20T 脉冲背景场下(脉冲上升时间t=10ms),J_c(Nb_3Sn)值分别达4.4×10~4A/cm~2和3.3 ×10~4A/cm~2.  相似文献   

2.
近十年来,人们对多芯Nb_3Sn超导复合导体(以下简称导体)进行了大量的研究,结果表明:在制作工艺上,采用青铜固态扩散或外部涂锡扩散方法均是可行的;在超导性能方面,这种导体材料的载流能力目前已达到J_c=1×10~4A/cm~2(4.2K,12T)的水平,可以满足受控装置、高能物理及超导电机的要求。近期,有待进一步弄清楚的主要问题是建立导体在使用中所承受的应力-应变与载流能力退化之间的关系。  相似文献   

3.
在 Nb/Cu 挤压管法制备的多芯 Nb_3Sn 超导复合线中添加合金元素 Ti 使其超导性能特别是在高场下的临界电流密度 J_c 得到显著改善.T_c 值提高约0.3K,H_(c2)(0)值提高到大约29Tesla,在4.2K_2 15T 和20T 脉冲背景磁场下(脉冲上升时间为10ms),J_c(Nb_3Sn)值分别达到4.4×10~4A/cm~2和3.3×10~4A/cm~2.在实验事实基础上,认为在低温下(<43K)掺适量Ti 元素的 Nb_3Sn 会发生部分马氏体相变,并用此观点结合磁通钉扎基本原理,对掺适量 Ti元素 Nb_3Sn 超导性能显著改善的事实进行解释,得到了一个改善掺适量 Ti Nb_3Sn 超导性能的可能机制.  相似文献   

4.
本文报道了导体的冶金与超导性能。导体的临界电流密度J_c(4.2K)达到9.0 ×10_4A/cm_2(10T)、5.8×10~4A/cm_2(12T)、1.7×10_4A/Cm_2(16T);上临界磁场H_(c2)~*(外推)为~22T(4.2K);超导转变温度T_c在17.5—17.9K范围;在室温弯曲直径大于或等于100倍线材导体直径时,J_c无退降。使用先绕制后扩散反应的方法成功地制作出了多芯Nb_3Sn螺管超导磁体,此超导磁体在12.8T的背场下,总场达到15.2T。本研究结果意味着,采用这种导体制作15T的实用高场超导磁体是可能的。  相似文献   

5.
本文报告了扩散Nb_3Sn和气相沉积Nb_3Sn带材样品在4.2K、高磁场(~22T)下的临界电流测量结果,表明这两种材料具有良好的超导性能,在12T下,其Jc(Nb_3Sn)分别为3.0×10~3A/cm~2及2.9×10~5A/cm~2;在15T下分别为1.4×10~5A/cm~2及6.0×10~4A/cm~2.文中对测量结果进行了简要评价.  相似文献   

6.
采用粉末套管法制备了单芯,7芯,49芯和343芯Bi_(1.8)Pb_(0.4)Sr_2Ca_(2.2)Cu_3,O_x/Ag 复合带材,并研究了热处理条件,加工方式和弯曲应变对带材超导性能和组织结构的影响.研究表明,带材 J_c 对烧结温度十分敏感,在845℃附近作200h 烧结热处理,其 J_c 都有最大值.采用反复压制和烧结的工艺,可有效地改善带材的 J_c,其中49芯带材 J_c(77K,0T)=1.5×10~4A/Cm~2和 J_c(77K,1T)=1.20×10~3A/cm~2.在弯曲应变状态下,带材的 J_c 与其芯数密切相关,随着芯数增加,带材抗应变性能改善,其中343芯带材,当弯曲应变为~1%时,J_c 仍达无弯曲应变时的~70%,为单芯带材的5倍多.  相似文献   

7.
研究“微细多芯Nb/Cu挤压复合管富Sn中心扩散法”制备Nb_3Sn化合物超导材料,经700℃/24h反应扩散,样品的临界全电流密度Jc(4.2k,6.0T)=3.2×10~5A/cm~2,临界转变温度Tc=17.53k.  相似文献   

8.
本文介绍了一种新型的铜稳定多芯Nb_3Sn超导材料。即用价格便宜的Nb-P青铜代替钽作扩散阻挡层制备的铜稳定多芯Nb_3Sn超导材料。此材料成本低,易于加工且超导性能良好,为绕制高场磁体提供了合适的导体。文中对用Nb-P青铜代T_a作扩散阻挡层的可能性进行了研究,并作了有关的微观结构分析,还提供了高场临界电流的测试数据.在10万G的磁场下,J_c(青铜加铌)=9.65×10~4A/cm~2,可与国内外同类产品相比。  相似文献   

9.
本文全面地研究了在冷加工和热处理多次交替进行中时效温度、时效时间、时效次数、次数分配、最后一次时效后最终冷变形量等对NbTi/Cu多芯复合线J_c的影响.以上各因素的适当地调整和匹配是获得最佳J_c的关键.选用适宜的各种因素的试验结果得到了最佳J_c=4.0×10~5A/cm~2(4.2K,5T).小批量试制的线材的J_c为2.5—3.0×10~5A/cm~2(4.2K、5T).  相似文献   

10.
本文采用挤压工艺研制19芯结构的多芯MgB_2/Nb/Cu超导线材,通过单道次挤压工艺将多芯复合包套从Φ64mm挤压到Φ20mm。挤压后的复合线通过冷拉拔最终加工到Φ1.4mm,并在670℃,保温2h进行烧结热处理,成功地制备出百米量级长度的MgB_2超导线材。采用该工艺所制备MgB_2超导线材具有良好的晶粒连接性和芯丝结合强度;显微分析表明该多芯复合线材横截面及超导芯丝分布较为均匀;在20和35K,自场下测试了所研制线材的传输性能,其超导临界电流密度J_c分别为1.05×10~5和6.7×10~4A/cm~2。  相似文献   

11.
研究了用部分熔化法制备Tl-1223超导体的工艺.样品的名义组成为(Tl_(0.5)Pb(0.5))(Sr_(0.8)Ba_(0.2))Ca_2Cu_3O_y。经熔化退火的样品,其磁化电流在77K和1T下大于2×10~4A/cm~2。用熔化—退火的超导粉作原料制得的复Ag带短样,J_c达1.6—1.7×10~4A/cm~2(77K,OT)。采用烧结后的超导粉作原料,在制备复Ag带的工艺中,如用熔化—退火的热处理制度,可以免除单轴压的冷加工工艺,这对长带的制备将带来很大的便利。  相似文献   

12.
采用Nb管和高Sn含量的Cu-Sn,Cu-Sn-Ti,Cu-Sn-In合金之间的内扩散法制备了Nb_3Sn多芯超导复合线,研究了Nb_3Sn反应扩散热处理条件和添加元素Ti、In对Nb_3Sn反应层生长动力学、组织结构和超导性能的影响。结果表明:母材中添加适量的第三元素Ti或In均提高Nb_3Sn反应层生长速率,与In相比,Ti的效果更为显著.添Ti样品的T_c值在母材添Ti量为0.4w/o处出现峰值,比末添Ti样品的T_c值升高0.3K.添Ti样品的H_(c2)(o)值随母材添Ti量增加单调提高,当母材添Ti量为0.76w/o时,其H_(c2)(o)值由未添Ti样品的21T提高到大约29T.在4.2K和15T脉冲背景磁场(脉冲上升时间t_m=10ms)下,添Ti和添In样品的J_c(non Cu)值分别可达6×10~4Acm~(-2)和2.5×10~4Acm~(-2).  相似文献   

13.
本文报道了 CVD Nb_3Sn 超导带热处理的研究结果.短样品经适当的热处理后,其 T_c 由15.6K 提高到17.6K,H_c_2(4.2K)达23.4T.尤其是高场下的载流能力有了明显的提高,在22.1T 场强下,其 I_c、J_c(Nb_3Sn)分别高达5A 和1.33×10~4A/cm~2(4.2K).长带热处理后,其T_c 由15.6K 增至17.6K,正比于钉扎强度的 H_oI_c 值提高20%以上,励磁速度也加快很多,这说明成品带的高场性能和稳定性提高了。本文还对带材性能提高的原因进行了分析和讨论.  相似文献   

14.
采用Nb管和富Sn的铜锡合金之间的内扩散法制备了33和55芯的多芯Nb_3 Sn超导复合线.研究了Nb_3Sn反应扩散热处理(600—850℃,1—250hr)和添加元素In对Nb_3Sn反应扩散层的厚度、晶粒大小和超导性能的影响.结果表明:阶梯升温扩散热处理有利于晶粒细化,添加元素In提高了Nb_3Sn反应扩散层平均生长速率与Nb_3Sn晶粒长大速率之比值.55芯Nb_3(SnIn)复合线全电流密度J_c(4.2K,6T)约为7.3×10~4 Acm~(-2)  相似文献   

15.
采用三步反应法制备 Bi 系超导体,研究其银包套复合带的超导性能.实验结果表明,这种粉末的复合带的临界电流密度优于“大混合”粉末的复合带.在适合的热处理和加工条件下,其最优 J_c 值可达1.3×10~4A/cm~2(77K,0T).  相似文献   

16.
本文报道了用快速多层沉积的CVD方法连续制备Nb_3Ge超导带的初步研究结果.用H_2还原气态的NbCI_4和GeCI_2,在带速为15—23m/hr·的加热基体(Hastelloy B)上沉积出Nb_3Ge.已制出带宽2.5mm、沉积层每边厚5μm、A15 Nb_3Ge含量占大部份的样品,其T_c(起始)达到21.0K,T_c(中点)为19.0K,在4.2K和4T场强下,I_c和J_c(Nb_3Ge)分别为115A和4.6×10~5A/cm~2.对改进连续CVD法制备实用化Nb_3Ge带的某些工艺问题进行了讨论.  相似文献   

17.
本文报道了青铜法55×55芯 Nb/Cu-7.4at%Sn-(0.5、0.6)at%Ti复合线的超导性能。导体临界电流密度J_c(青铜十铌)最佳值:Nb/Cu-7.4at%Sn-0.6at%Ti复合线,在4.2K、16T和20T下分别为300A/mm_2和133A/mm_2。Nb/Cu-7.4at%Sn-0.5at%Ti复合线,在4.2K和ZK、20T下分别为119A/mm_2和219A/mm_2。超导转变温度T_c为17.30~17.45K。上临界磁场B_(c2)~*在4.2K和2K下分别为26.0~26.8T和29T。  相似文献   

18.
实验上测量了具有较高输运 J_c(77K 和零场下,J_c=1750A/cm~2)的 Bi_(1.80)Pb_(0.34)Sr((1.86)Ca_2Cu_3O_y,块材的输运 J_c 和温度及磁场的关系,实验结果在磁通蠕动模型的基础上得以解释,并得到了零场下 T_c 附近和77K 外加磁场下样品的激活能分别为:U(T,0)=87.4(meV)(1—T/T_c)~(1/2)和 U(77K,H)=64+2.82lnH(meV),H 的单位为特斯拉.  相似文献   

19.
本文报导了一种新型实用Nb~3Sn超导材料。它是含有6根多芯Nb_3Sn复合线(φ0.14mm)和1根中心增强钼丝(φ0.16mm)的7股单层微型电缆(φ0.45mm)。其最佳性能如下:T_c=17.7K;H_(c2)=24.9T(4.2K);16T下的J_c( 青铜+Nb_3Sn+Nb)=260A/mm~2(4.2K);许用弯曲直径为20mm,室温下许用拉伸应力高达392MPa,且能多次复绕,其超导性能不退降。其内径为40mm的试验磁体与12.8T背场组合,中心磁场达到14.52T。它是制作小型高场超导磁体的优良材料。  相似文献   

20.
采用 Nb 管富 Sn 法制备 Nb_3Sn 导体母材中添加适量合金元素 Ti 或 Mg 分别显著提高导体在≥12T 或≤12T 磁场区域的载流能力.由于 Ti 和 Mg 改善 Nb_3Sn 材料载流能力的机制不同,同时,Ti 进入 A15型(Nb,Ti)_3Sn 化合物晶格,并占据 Nb 原子的结晶学位置,而进入 Nb_3Sn 反应层的 Mg 则以 Mg-Nb-O 化合物沉淀相微粒弥散分布在 Cu-Sn-Mg 母材侧的 Nb_3Sn 晶粒中,因此,若在母材中同时添加合金元素 Ti 和 Mg 将可能明显提高导体在8—20T 整个实用磁场区域的载流能力.使用(Nb,Ti)_3Sn 导体(0.99mm~(?)×1.69mm~ω)制造的超导磁体(2a_1×2a_2×2b=31.5mm×70mm×99.5mm)在10.4T NbTi-Nb_3Sn 背景磁场下,磁体工作电流 I_a=392A(未失超)时,磁体中心场强 H_(?)=14.2T,此时,导体的工作电流密度 Ja(non cu)(14.2T,4.2K)=5.2×10~4Acm~(-2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号