首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Ab initio SCF CI calculations with a minimal STO-3G basis set have been performed on the hydrogen bonded dimers in which H2O is the proton donor to H2CO in its relaxed singlet and triplet n→π* states. Two dimers which are easily interconverted are found in the singet n→π* state with hydrogen bond energies of 1.82 and 1.71 kcal/mole. The equilibrium dimer in the triplet state has a hydrogen bond energy of 2.97 kcal/mole. In both states, hydrogen bond formation occurs at the carbon atom. The structures of the dimers and the nature of the intermolecular surfaces in the regions of hydrogen bond formation are examined. Electron densities and distributions are also discussed.  相似文献   

2.
B3LYP and MP2 methods with the most popular basis set, 6-311++G(d,p) are applied to optimize the equilibrium conformers of 4-amino-3-pentene-2-thial. Furthermore, to have more reliable energies, the total electron energies of all forms are recomputed at the CBS-4M level of theory. A theoretical investigation of the equilibrium conformers clearly shows that various intramolecular hydrogen bonds (IHBs) such as N–H...S, S–H...N, S–H...π, C–H...N, and C–H...S are the most effective factors in the conformational preference of thialamine, thiolimine, and thialimine groups. Hence, the IHB strengths are evaluated in various resonance-assisted hydrogen bond systems by geometrical factors, topological parameters, and charge transfers corresponding to orbital interactions. Also, the solvent effect on the IHB strength is considered using Tomasi′s PCM. Our results in the gas phase reveal that the thialamine group has extra stability with respect to thiolimine and thialimine ones. The population analyses of all the possible conformers by the NBO method predict that the origin of this tautomeric preference is mainly due to more significant π electron delocalization in the framework of thialamine forms, especially πC=C → π C = S* and Lp(N) → π C = C* charge transfers. Moreover, the excited state properties of IHBs in these systems are investigated theoretically using the time-dependent DFT method.  相似文献   

3.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

4.
Ab initio SCF and Cl calculations are reported for ground and various low-lying Rydberg and valence excited states of thioformaldehyde H2CS. A double-zeta basis of near Hartree-Fock quality is employed in this work and the importance of polarization functions is also assessed. The calculations indicate uniformly larger CX bond lengths in this system than for H2CO in the corresponding electronic states; they also lind potential minima for H2CS non-planar nuclear conformations in the (n,π*) and (π,π*) excited states but in each case the calculated inversion barriers are seen to be smaller than those encountered in formaldehyde. The vertical transition energies to the various excited states studied are also found to be significantly smaller in H2CS than in H2CO but the order of electronic states is concluded to be virtually identical for the two systems. The lowest-lying excited states are the 3,1(n,π*) species calculated at 1.84 and 2.17 eV respectively; the first two allowed transitions are indicated to be the Rydberg species (n,sR) and (n,pxR) at 5.83 and 6.62 eV. These are followed by the two allowed transitions σ → π* and π → π* at 7.51 and 7.92 eV respectively, both well below the first ionization limit in H2CS. The much smaller splitting between the 3,1(π,π*) species in H2CS than in H2CO is attributed to the relatively diffuse charge distribution of the sulfur atom compared to that of oxygen.  相似文献   

5.
The α,β-unsatured ketone 10α-testosterone has been reported previously [6] to photoisomerize in t-butanol solution to the β,γ-unsaturated ketone. The irradiation had been carried out using a high-pressure mercury lamp in a quartz vessel. For structural reasons this double bond shift cannot proceed through a photoenolization mechanism involving an intramolecular hydrogen transfer from the γ-position to the enone oxygen as has been suggested to operate in several formally analogous cases of aliphatic enone isomerizations. In the present reinvestigation, O-acetyl 10α-testosterone ( 1 ) was used, employing selectively either excitation of its n → π* (with wavelengths > 300 nm) or its π → π* absorption band (with 253,7 nm). In t-butanol solution the doublebond shift 1 → 2 could be effected with π→* excitation only. Experiments in deuterated solvent (t-BuOD) resulted in deuterium in corporation in both the δ5-ketone in the C(4)-position, cf.( 3 ) and in the conjugated ketone. These results indicate that the reactions is initiated either in the, Sπ,π* state or in a high vibrational mode of the S0 or tππ*state. n→ π* Excitation of 1 in t-butanol gave essentially no over-all chemical change, while in benzene solution it resulted again in a double bond isomerization ( 1 → 2 ). In analogy to results with similar enones [28] under identical conditions the deconjugation in benzene may be the consequence of an intermolecular hydrogen abstraction of the Tn,π* excited state of the enone. Another specifically π →π* induced photoreaction was observed on irradiation of the β, γ-unsaturated ketone 2 in t-BuOD with 253,7 nm. The olefinic hydrogen at C-6 of 2 was exchanged with deuterium and, to a small extent, isomerization to the conjugated ketone 1 with concomitant deuterium incorporation occurred. It is concluded that from the higher excited state of the β, γ-unsaturated ketone, but not from its Sn,π* state, an activation mode of the double bond is accessible to effect D+ addition at C-6 followed by deprotonation to 4 and to deuterated 1 , respectively.  相似文献   

6.
The dynamics of the excited states of 3‐ and 4‐aminofluoren‐9‐ones (3AF and 4AF, respectively) are investigated in different kinds of solvents by using a subpicosecond time‐resolved absorption spectroscopic technique. They undergo hydrogen‐bonding interaction with protic solvents in both the ground and excited states. However, this interaction is more significant in the lowest excited singlet (S1) state because of its substantial intramolecular charge‐transfer character. Significant differences in the spectroscopic characteristics and temporal dynamics of the S1 states of 3AF and 4AF in aprotic and protic solvents reveal that the intermolecular hydrogen‐bonding interaction between the S1 state and protic solvents plays an important role in its relaxation process. Perfect linear correlation between the relaxation times of the S1 state and the longitudinal relaxation times (τL) of alcoholic solvents confirms the prediction regarding the solvation process via hydrogen‐bond reorganization. In the case of weakly interacting systems, the relaxation process can be well described by a dipolar solvation‐like process involving rotation of the OH groups of the alcoholic solvents, whereas in solvents having a strong hydrogen‐bond‐donating ability, for example, methanol and trifluoroethanol, it involves the conversion of the non‐hydrogen‐bonded form to the hydrogen‐bonded complex of the S1 state. Efficient radiationless deactivation of the S1 state of the aminofluorenones by protic solvents is successfully explained by the energy‐gap law, by using the energy of the fully solvated S1 state determined from the time‐resolved spectroscopic data.  相似文献   

7.
Given the tremendous potential applications of excited state intramolecular proton transfer (ESIPT) systems, ESIPT molecules have received widespread attention. In this work, based on density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we theoretically study the excited state dynamical behaviors of salicyladazine (SA) molecules. Our simulated results show that the double intramolecular hydrogen bonds of SA are strengthened in the S1 state via exploring bond distances, bond angles, and infrared (IR) vibrational spectra. Exploring the frontier molecular orbitals (MOs), we confirm that charge redistributions indeed have effects on excited state dynamical behaviors. The increased electronic densities on N atoms and the decreased electronic densities on O atoms imply that charge redistribution may trigger the ESPT process. Analyzing the constructed S0‐state and S1‐state potential energy surfaces (PESs), we confirm that only the excited state single proton transfer reaction can occur although SA possesses two intramolecular hydrogen bonds. In this work, we clarify the specific ESIPT mechanism, which may facilitate developing novel applications based on the SA system in future.  相似文献   

8.
The configuration of the lowest excited state of acenaphthenone, S1(π, π*) or T1(π, π*), depending on the solvent, dominates photoluminescence. The T1(n, π*) state in aprotic organic solvents is responsible for the phosphorescence of acenaphthenone. The wavelengths of the phosphorescence measured in benzene are 576 nm and 635 nm (vibronic) with 3.3 × 10?4 quantum efficiency. However, the S1(π, π*) state in protic solution which dominates the fluorescence emission depending upon acidity is the most distinctive feature of acenaphthenone. The wavelengths of the emissions are 446 nm under water solvation with 0.185 quantum efficiency and 538 nm with 0.097 quantum efficiency under high acidity. The emission at 446 nm is assigned from a H-bonded keto-form excited state, whereas the emission at 538 nm is probably due to the excited state of protonated keto-form. The pKa value in aqueous solution measured by diminution of fluorescence in basic solutions is 12.5 ± 0.4.  相似文献   

9.
An unusual temperature effect on the intensity of fluorescence of 9-carbonyl derivatives of anthracene is observed. This is interpreted in terms of an intersystem crossing process from the lowest excited singlet state Sππ* to the higher excited triplet state T*.  相似文献   

10.
Fluorescence lifetimes of pyridine vapor were measured by exciting at various vibrational bands in the lowest-energy region of the S1(n,π*) ← S0 transition. The lifetime varies between 35 and 60 ps, depending on the vibronic level excited. The non-radiative decay from S1 is characterized by particularly fast S1 → S0 internal conversion.  相似文献   

11.
In this work, we devote to explore excited‐state intramolecular proton transfer (ESIPT) behavior for a novel fluorescent molecule naphthalimide‐based 2‐(2‐hydroxyphenyl)‐benzothiazole (HNIBT) [New J. Chem. 2019, 43, 9152.] in toluene and methanol (MeOH) solvents. Exploring weak interactions, stable HNIBT‐enol, and HNIBT‐MeOH‐enol complex can be found in S0 state via TDDFT/B3LYP/6‐311+G(d,p) level. Given photoexcitation, intramolecular hydrogen bond O1? H2···N3 of HNIBT‐enol and HNIBT‐MeOH‐enol is dramatically enhanced, which offers impetus for facilitates ESIPT reaction. After repeated comparisons, we verify the unavailability of intermolecular hydrogen bonding effects between HNIBT‐enol and MeOH molecules. In view of excitation, HOMO (π) → LUMO (π*) transition and the changes of electronical densities indeed impulse ESIPT tendency. Via constructing potential energy curves (PECs), for both HNIBT‐enol and HNIBT‐MeOH‐enol complex, the ESIPT could only occur along with intramolecular hydrogen bond O1? H2···N3. Through comparison, the potential barrier falls from 4.124 kcal/mol (HNIBT‐enol) to 2.132 kcal/mol (HNIBT‐MeOH‐enol). Therefore, we confirm that the ESIPT of the HNIBT system happens more easily in the MeOH solvent compared with the toluene solvent.  相似文献   

12.
In this work, density functional theory (DFT) and time‐dependent DFT (TDDFT) methods were used to investigate the excited‐state dynamics of the excited‐state hydrogen‐bonding variations and proton transfer mechanism for a novel white‐light fluorophore 2‐(4‐[dimethylamino]phenyl)‐7‐hyroxy‐6‐(3‐phenylpropanoyl)‐4H‐chromen‐4‐one ( 1 ). The methods we adopted could successfully reproduce the experimental electronic spectra, which shows the appropriateness of the theoretical level in this work. Using molecular electrostatic potential (MEP) as well as the reduced density gradient (RDG) versus the product of the sign of the second largest eigenvalue of the electron density Hessian matrix and electron density (sign[λ2]ρ), we demonstrate that an intramolecular hydrogen bond O1–H2···O3 should be formed spontaneously in the S0 state. By analyzing the chemical structures, infrared vibrational spectra, and hydrogen‐bonding energies, we confirm that O1–H2·O3 should be strengthened in the S1 state, which reveals the possibility of an excited‐state intramolecular proton transfer (ESIPT) process. On investigating the excitation process, we find the S0 → S1 transition corresponding to the charge transfer, which provides the driving force for ESIPT. By constructing the potential energy curves, we show that the ESIPT reaction results in a dynamic equilibrium in the S1 state between the forward and backward processes, which facilitates the emission of white light.  相似文献   

13.
Two anomalous emission bands in the fluorescence spectrum of 3,4-benzpyrene, dissolved in 2-methylpentane, have been studied as a function of temperature. These emissions originate from the second excited singlet state S2, and from a vibrationally excited S1 (S*1) respectively. From the temperature dependence of the relative yield and the decay time of the S*1 emission it can be concluded that the vibrational relaxation of this state is hampered. The rate constant for this relaxation process is smaller that 4 > 62;x 107 sec?1.  相似文献   

14.
It is well known that the molecular excited state dynamical process plays important roles in designing and developing novel applications. In this work, based on density functional theory and time‐dependent density functional theory methods, we theoretically explored a novel 3‐hydroxythioflavone (3HTF). Through calculating the electrostatic potential surface of the 3HTF structure, we confirm the formation of intramolecular hydrogen bonding O2‐H3···O4. Our theoretically obtained dominating bond lengths and bond angles involved in hydrogen bonds demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. Coupling with the simulated infrared vibrational spectra, we further verify the enhanced hydrogen bonding O2‐H3···O4 in the S1 state. Upon photoexcitation, we found that the charge transfer characteristics around hydrogen bonding moieties play important roles in facilitating the excited state intramolecular proton transfer (ESIPT) process. Via constructing potential energy curves in both S0 and S1 states, we confirm the almost nonbarrier ESIPT reaction should be an ultrafast process that further explains the previous experimental phenomenon. At last, we search the S1‐state transition state (TS) structure along with ESIPT path, based on which we simulate the intrinsic reaction coordinate path that further confirms the ESIPT mechanism. We hope that our theoretical work could guide novel applications based on the 3HTF system in future.  相似文献   

15.
The geometries of 7-azaindole (7AI), its tautomer (7AT), and 7AI–H2O and 7AT–H2O complexes were optimised in the ground state and some low-lying singlet excited states using the 3-21G basis set. Differences of total energies of the optimised ground and excited states and the vertical excitation energies of these systems were used to explain the observed electronic spectra. Effect of solvation of these systems in bulk water was studied using the polarized continuum model (PCM). The mode of binding of a water molecule in the S2(n–π*) excited state of 7AI was found to be quite different from those in its ground and π–π* excited states. It is shown that crossing of the lowest two singlet excited-state potential surfaces S1(π–π*) and S2(n–π*) of 7AI occurs in the vapour phase under geometry relaxation while on interaction with water, the S2(n–π*) excited state is raised up appreciably going even above the S3(π–π*) excited state. Ground- and excited-state molecular electrostatic potential mapping was carried out, which led to valuable information regarding the nature of excited states of the above-mentioned systems.  相似文献   

16.
Given the tremendous potential of fluorescence sensors in recent years, in this present work, we theoretically explore a novel fluorescence chemosensor [2‐(2‐Hydroxy‐phenyl)‐1H‐benzoimidazol‐5‐yl]‐phenyl‐methanone (HBPM) about its excited state behaviors and probe‐response mechanism. Using density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods, we explore the S0‐state and S1‐state hydrogen bond dynamical behaviors and confirm that the strengthening intramolecular hydrogen bond in the S1 state may promote the excited state intramolecular proton transfer (ESIPT) reaction. In view of the photoexcitation process, we find that the charge redistribution around the hydroxyl moiety plays important roles in providing driving force for ESIPT. And the constructed potential energy curves further verify that the ESIPT process of HBPM should be ultrafast. That is the reason why the normal HBPM fluorescence cannot be detected in previous experiment. Furthermore, with the addition of fluoride anions, the exothermal deprotonation process occurs spontaneously along with the intermolecular hydrogen bond O–H?F. It reveals the uniqueness of detecting fluoride anions using HBPM molecules. As a whole, the fluoride anions inhibit the initial ESIPT process of HBPM, which results in different fluorescence behaviors. This work presents the clear ESIPT process and fluoride anion‐sensing mechanism of a novel HBPM chemosensor.  相似文献   

17.
Multi-reference configuration interaction, MR-CI (including extensivity corrections, named +Q), calculations were performed on the S0–S3 states of cyclohexa-2,4-diene-1-thione (thione 24 ) and cyclohexa-2,5-diene-1-thione (thione 25 ), which are thione isomers of thiophenol. Several types of uncontracted MR-CIS and MR-CISD wavefunctions were employed, comprising MR-CI expansions as large as ~365 × 106 configuration state functions. The nature of the studied excited states was characterized. Vertical excitation energies (ΔE) and oscillator strengths (f) were computed. The most intense transitions (S0 → S2 for 24 and S0 → S3 for 25 ) did not change with the wavefunction, although a variation as large as ~1 eV was obtained for the S3 state of 24 , at the highest (MR-CI+Q) level. On the other hand, ΔE changed at most by ~0.56 eV for 25 as the wavefunction changes, at the same level. The S1 state of both thiones was found to have nπ* character and is in the visible region. For 24 , S2 and S3 are ππ* and nπ* states, respectively, while for 25 the reverse order is obtained. S2 and S3 are in the range ~3.5 to 5.2 eV, again at the highest level. It is the first time that the excited states of the title molecules are studied. The computed results agree with the experimental onset of photoreactions of thiones 24 and 25 found by Reva et al (Phys. Chem. Chem. Phys., 2015 , 17, 4888).  相似文献   

18.
The specific fluorescence properties of morin (3,2′,4′,5,7‐pentahydroxyflavone) were studied in various CH3OH–H2O and CH3CN–H2O mixed solvents. Although the dihedral angle is large in the S0 state, morin has an almost planar molecular structure in the S1 state owing to the very low rotational energy barrier around the interring bond between B and the A, C ring. The excited state intramolecular proton transfer (ESIPT) at the S1 state cannot occur immediately after excitation, S1 → S0 fluorescence can be observed. Two conformers, Morin A and B have been known. At the CH3OH–H2O, Morin B will be the principal species but at the CH3CN–H2O, Morin A is the principal species. At the CH3OH–H2O, owing to the large Franck–Condon (FC) factor for S2 → S1 internal convernal (IC) and flexible molecular structure, only S1 → S0 fluorescence was exhibited. At the CH3CN–H2O, as the FC factor for S2 → S1 IC is small and molecular structure is rigid, S2 → S0 and S1 → S0 dual fluorescence was observed. This abnormal fluorescence property was further supported by the small pK1 value, effective delocalization of the lone pair electrons of C(2′)–OH to the A, C ring, and a theoretical calculation.  相似文献   

19.
The photophysical properties of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine were studied in different solvents. These compounds have higher values of fluorescence quantum yields and longer fluorescence lifetimes, compared to those obtained for their alloxazine analogs. Electronic structure and S0Si transitions were investigated using the ab initio methods [MP2, CIS(D), EOM‐CCSD] with the correlation‐consistent basis sets. Also the time‐dependent density functional theory (TD‐DFT) has been employed. The lowest singlet excited states of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine are predicted to have the π, π* character, whereas similar alloxazines have two close‐lying π, π* and n, π* transitions. Experimental steady‐state and time‐resolved spectral studies indicate formation of an isoalloxazinic excited state via excited‐state double‐proton transfer (ESDPT) catalyzed by an acetic acid molecule that forms a hydrogen bond complex with the 5‐deazaalloxazine molecule. Solvatochromism of both 5‐deazaalloxazine and its 1,3‐dimethyl substituted derivative was analyzed using the Kamlet–Taft scale and four‐parameter Catalán solvent scale. The most significant result of our studies is that the both scales show a strong influence of solvent acidity (hydrogen bond donating ability) on the emission properties of these compounds, indicating the importance of intermolecular solute–solvent hydrogen‐bonding interactions in their excited state.  相似文献   

20.
The europium complex [EuCl2(bpy)2(H2O)2]Cl?1.25 C2H6O?0.37 H2O, where bpy is 2,2′‐bipyridine, was synthesized and investigated with the aim to relate its molecular geometry and crystal packing to the efficiency of energy‐transfer processes. The presence of H‐bonds between noncoordinated Cl? ions and coordinated H2O molecules leads to the formation of discrete trimers assembled by a number of C? H???Cl and stacking interactions into ‘supramolecular balls’ which contain Cl? ions and solvate molecules (H2O and EtOH). The additional stabilization of the complex is due to intramolecular N???C interactions between two bpy ligands that causes some shortening of the Eu? N bonds. Deciphering the luminescence properties of the Eu complex was performed under consideration of both the composition of the inner coordination sphere and the peculiarities of the crystal packing. The influence of the latter and the bpy orientation on the energy of the ligand→Eu charge‐transfer state (LMCT) was established, and an additional excited state induced by the π‐stacking interaction (SICT) was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号